Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT thị xã Hoài Nhơn - Bình Định

Thứ Sáu ngày 04 tháng 12 năm 2020, phòng Giáo dục và Đào tạo thị xã Hoài Nhơn, tỉnh Bình Định tổ chức kỳ thi chọn học sinh giỏi lớp 9 môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT thị xã Hoài Nhơn – Bình Định gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT thị xã Hoài Nhơn – Bình Định : + Cho nửa đường tròn tâm O đường kính AB. Gọi I là một điểm trên nửa đường tròn tâm O (I khác A và B). Vẽ đường tròn tâm I tiếp xúc với AB tại H. Từ A và B vẽ hai tiếp tuyến với đường tròn tâm I, tiếp xúc với đường tròn tâm I lần lượt tại C và D. a) Chứng minh C, I, D thẳng hàng. b) Chứng minh AC.BD = CD^2/4. + Cho tam giác ABC có đường phân giác trong AD (D thuộc BC) sao cho BD = a và CD = b (với a > b). Tiếp tuyến tại A của đường tròn ngoại tiếp tam giác ABC cắt tia BC tại M. Tính MA theo a và b. + Cho nửa đường tròn tâm O, đường kính AB = 2R và M là một điểm thuộc nửa đường tròn (khác A và B). Tiếp tuyến của (O) tại M cắt các tiếp tuyến tại A và B của (O) lần lượt tại các điểm C và D. Tìm giá trị nhỏ nhất của tổng diện tích của hai tam giác ACM và BDM.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT huyện Phúc Thọ Hà Nội
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT huyện Phúc Thọ Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT huyện Phúc Thọ Hà Nội Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT huyện Phúc Thọ Hà Nội Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo huyện Phúc Thọ, thành phố Hà Nội. Đề thi bao gồm 5 bài toán dạng tự luận trên 1 trang, thời gian làm bài là 150 phút (không tính thời gian phát đề). Trích dẫn một số câu hỏi trong đề thi: + Đề cho x, y là hai số dương thoả mãn (x + y)2 >= 6 + 2xy. Hãy tìm giá trị nhỏ nhất của biểu thức Q = x^4 – 2.2 + y^2 + 6/x^2 + 8/y^2. + Cho M = (x^2 + 2yz – 1)(y^2 + 2xz – 1)(1 – z^2 – 2xy), với xy + yz + zx = 1. Chứng minh rằng M là một số hữu tỉ. + Trong tam giác ABC vuông tại A, đường cao AH, I là trung điểm AC, F là hình chiếu của I trên BC. Kẻ tia CE vuông góc AC cắt IF tại E. Hãy tính độ dài AH và AC, chứng minh HA.HI = HB.HE, chứng minh AE vuông góc với BI. Chúc quý thầy cô và các em học sinh đạt kết quả cao trong đề thi học sinh giỏi Toán lớp 9 năm 2022 – 2023. Hy vọng rằng đề thi sẽ giúp các bạn rèn luyện và phát triển khả năng Toán của mình!
Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Cầu Giấy Hà Nội
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán năm 2022 - 2023 trường THCS Cầu Giấy, Hà Nội Đề học sinh giỏi lớp 9 môn Toán năm 2022 - 2023 trường THCS Cầu Giấy, Hà Nội Chào quý thầy, cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 – 2023 của trường THCS Cầu Giấy, Hà Nội. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 90 phút (không tính thời gian phát đề). Kỳ thi sẽ được tổ chức vào ngày ... tháng 09 năm 2022. Đề học sinh giỏi Toán lớp 9 năm 2022 – 2023 trường THCS Cầu Giấy, Hà Nội có những bài toán đa dạng và thú vị, mời quý vị cùng tham gia giải đề thi nhé. Dưới đây là một số câu hỏi trong đề thi: 1. Tìm giá trị nhỏ nhất và lớn nhất của biểu thức T = 1/(a + 1) + 1/(b + 1) + 1/(c + 1), với a, b, c là các số thực không âm thỏa mãn a + b + c = 3. 2. Trên tam giác nhọn ABC, ta có đường cao AD, BE, CF đồng qui tại H. Chứng minh rằng I là trung điểm của AH và IEM = 90°. 3. Xét tập hợp A gồm các số nguyên dương không vượt quá 100, thỏa mãn điều kiện nếu không phải số nhỏ nhất thì tồn tại a, b, c trong A sao cho x = a + b + c. Chứng minh rằng tất cả các phần tử của tập hợp A đều là số chẵn. Các em hãy thử sức với đề thi này và cố gắng giải đúng nhé! Chúc các em thành công!
Đề khảo sát HSG lớp 9 môn Toán lần 1 năm 2022 2023 trường THCS Nguyễn Hồng Lễ Thanh Hóa
Nội dung Đề khảo sát HSG lớp 9 môn Toán lần 1 năm 2022 2023 trường THCS Nguyễn Hồng Lễ Thanh Hóa Bản PDF - Nội dung bài viết Đề khảo sát HSG lớp 9 môn Toán trường THCS Nguyễn Hồng Lễ Thanh Hóa Đề khảo sát HSG lớp 9 môn Toán trường THCS Nguyễn Hồng Lễ Thanh Hóa Sytu xin gửi đến phụ huynh, thầy cô và các em học sinh lớp 9 đề khảo sát để đánh giá chất lượng học sinh dự tuyển vào đội học sinh giỏi cấp tỉnh môn Toán lớp 9 lần 1 năm học 2022 - 2023 tại trường THCS Nguyễn Hồng Lễ, Thành phố Sầm Sơn, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào ngày 15 tháng 09 năm 2022. Đề khảo sát này sẽ giúp các em học sinh tự đánh giá được kiến thức và kỹ năng của mình trong môn Toán, từ đó chuẩn bị tốt nhất cho kỳ thi sắp tới. Hy vọng rằng các em sẽ tự tin và thành công trong việc vượt qua thách thức này, để phát huy tố chất và tiềm năng học tập của mình. Chúc các em học sinh lớp 9 trường THCS Nguyễn Hồng Lễ Thanh Hóa đạt kết quả cao trong kỳ thi và tiếp tục phấn đấu học tập, trau dồi kiến thức để gặt hái thành công trong tương lai.
Đề khảo sát lớp 9 môn Toán tháng 9 năm 2023 2024 trường THCS Lê Ngọc Hân Hà Nội
Nội dung Đề khảo sát lớp 9 môn Toán tháng 9 năm 2023 2024 trường THCS Lê Ngọc Hân Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán lớp 9 tháng 9 năm 2023 - 2024 trường THCS Lê Ngọc Hân Hà Nội Đề khảo sát Toán lớp 9 tháng 9 năm 2023 - 2024 trường THCS Lê Ngọc Hân Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến quý vị đề khảo sát chất lượng môn Toán lớp 9 tháng 9 năm học 2023 – 2024 tại trường THCS Lê Ngọc Hân, Hà Nội. Đề thi sẽ có hình thức tự luận, thời gian làm bài là 90 phút. Dưới đây là một số bài toán trích dẫn từ Đề khảo sát Toán lớp 9 tháng 9 năm 2023 - 2024 trường THCS Lê Ngọc Hân - Hà Nội: Bài 1: Giải bài toán bằng cách lập phương trình: Một người đi xe máy dự định đi từ A đến B với vận tốc 36km/h. Nhưng khi đi người ấy giảm vận tốc 6km/h nên đã đến B chậm hơn dự định là 24 phút. Tính quãng đường AB. Bài 2: Bài toán thực tế: Khi mặt trời chiếu qua đỉnh ngọn cây thì góc tạo bởi tia nắng mặt trời với mặt đất là 29° và bóng cây trên mặt đất là 16m. Tính chiều cao của cây (làm tròn đến hàng đơn vị). Bài 3: Bài toán thực tế: Khúc sông rộng 300m, nước chảy xiết. Một con thuyền xuất phát từ bến A đi sang bờ bên kia. Do bị nước đẩy nên con thuyền đi theo đường AB. Biết CAB = 60° và hai bờ sông song song. Tính quãng đường AB. Hy vọng rằng đề khảo sát này sẽ giúp các em học sinh ôn tập kiến thức một cách hiệu quả và tự tin hơn trước kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh đạt kết quả tốt! Xin cảm ơn.