Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Sử dụng yếu tố Z+ trong việc giải phương trình hàm trên R+ - Lê Phúc Lữ

Tài liệu gồm 24 trang, được biên soạn bởi thầy giáo Lê Phúc Lữ (giảng viên trường Đại học Khoa Học Tự Nhiên thành phố Hồ Chí Minh), hướng dẫn sử dụng yếu tố Z+ trong việc giải phương trình hàm trên R+. TÓM TẮT NỘI DUNG: Trong bài viết nhỏ này, tác giả muốn nhắc lại một số tình huống có thể dùng các tính toán trên tập số nguyên dương để hỗ trợ cho việc giải phương trình hàm trên tập hợp số thực dương. Cụ thể hơn là về: việc dùng chu kỳ tuần hoàn, phương trình hàm cộng tính và các đánh giá bất đẳng thức khác. 1) Giới thiệu: Phương trình hàm trên R+ là một lớp hàm đặc thù và đòi hỏi các kỹ thuật biến đổi, đánh giá ở mức độ nhất định. Hiện tại các đề bài thi trong và ngoài nước có khai thác các dạng này khá nhiều, có các bài toán khó, thử thách. Trong bài viết này, ta sẽ xét một số cách tiếp cận có liên quan đến yếu tố số nguyên dương như sau: – Phương trình hàm cộng tính f(x) + f(y) = f(x + y) trên R+ thì có thể giải được ra nghiệm f(x) = ax vì lý do trên R+ thì hàm cộng tính cũng sẽ đồng biến. Tuy nhiên, nếu như ta không có điều kiện mạnh như cộng tính mà chỉ có điều kiện yếu hơn là f(nx) = nf(x) với x thuộc R+ và n thuộc Z+ thì sao? Câu trả lời là vẫn sẽ giải được, nhưng cần kết hợp với tính đồng biến. Điều này sẽ được mô tả rõ hơn thông qua các ví dụ bên dưới. – Các phương trình hàm có dùng đến kỹ thuật chu kỳ tuần hoàn để chứng minh hàm hằng hoặc tính đơn ánh thì việc xuất hiện của các yếu tố nguyên dương của chu kỳ là tất yếu. Đôi khi ta cần khai thác điều đó khéo léo thì mới xử lý triệt để được bài toán. – Ngoài ra, yếu tố nguyên dương cũng xuất hiện khá bất ngờ và lại có thể dùng trong các bài toán đánh giá các bất đẳng thức trung gian để giải phương trình hàm rất hiệu quả. Với tâm lý cho rằng việc chỉ chứng minh được f(n) = n với n thuộc Z+ thì khó có thể đi đến f(x) = x với x thuộc R+ có khi lại làm mất đi cơ hội giải quyết được bài toán. 2) Sử dụng tính chất tuần hoàn. 3) Khai thác tính đơn điệu. 4) Các dạng khác. 5) Bài tập tự luyện.

Nguồn: toanmath.com

Đọc Sách

Phương trình hàm qua các cuộc thi trên thế giới năm 2022
Tài liệu gồm 53 trang, được biên soạn bởi tác giả Đoàn Quang Đăng, tuyển chọn các bài toán phương trình hàm qua các cuộc thi trên thế giới năm 2022, có đáp án và lời giải chi tiết; hỗ trợ học sinh ôn tập chuẩn bị cho kỳ thi học sinh giỏi Toán THPT. Mục lục : 1 Đề bài 2. 1.1 Phương trình hàm trên tập số thực 2. 1.2 Phương trình hàm trên tập số thực dương 3. 1.3 Phương trình hàm trên tập rời rạc 4. 1.4 Bất phương trình hàm 5. 2 Lời giải 6. 2.1 Phương trình hàm trên tập số thực 6. 2.2 Phương trình hàm trên tập các số thực dương 23. 2.3 Phương trình hàm trên tập rời rạc 38. 2.4 Bất phương trình hàm 47.
Đồ thị của hàm số đa thức
Tài liệu chủ đề đồ thị của hàm số đa thức gồm 10 trang, được biên soạn bởi tác giả Lê Phúc Lữ (ĐH KHTN TP HCM) và Trần Nguyễn Thanh Danh (PTNK TP HCM), hướng tới kỳ thi chọn học sinh giỏi Toán THPT cấp Quốc gia năm 2023.
Hai bổ đề trong bài toán phương trình hàm trên tập các số thực dương
Phương trình hàm trên tập các số thực dương luôn là các bài toán hay và khó. Để giải quyết các bài toán này chúng ta cần vận dụng nhiều kỹ thuật kinh điển trong giải toán phương trình hàm kết hợp nhuần nhuyễn với các kiến thức Đại số và Giải tích. Trong bài viết này, các tác giả Đoàn Quang Đăng (THPT Chuyên Bến Tre) và Võ Trần Hiền (THPT Chuyên Tiền Giang) sẽ giới thiệu hai bổ đề khá thú vị dùng để giải quyết các lớp bài toán có thể đưa về dạng f(x + A) = f(x) + B và f(x + A) + B = f(x + C) + D. Mục lục : 1 Bổ đề 1 – f(x + A) = f(x) + B 2. 2 Bổ đề 2 – f(x + A) + B = f(x + C) + D 10. 3 Bài tập rèn luyện 17. 4 Tài liệu tham khảo 18. + Diễn đàn Art of Problem Solving. + Nhóm Hướng tới Olympic VN. + Một góc nhìn tổng quát cho bài phương trình hàm thi HSG QG 2022 – Nguyễn Huy Trung. + Hai bổ đề trong bài toán phương trình hàm trên tập số thực dương – Đoàn Quang Đăng. + Vietnamese Mathematical Competitions 2022 Booklet.
Phương pháp thế và sử dụng tính chất ánh xạ giải toán phương trình hàm trên R
Tài liệu gồm 59 trang, hướng dẫn áp dụng phương pháp thế và phương pháp sử dụng tính chất ánh xạ trong việc giải bài toán phương trình hàm trên R. Trong chương trình chuyên Toán ở các trường THPT chuyên, phương trình hàm là một chuyên đề quan trọng. Hiện nay tài liệu về phương trình khá phong phú. Tuy vậy, việc giải được phương trình hàm vẫn là vấn đề khó đối với nhiều học sinh. Trong chuyên đề nhỏ này, chúng tôi sẽ trình bày hai phương pháp thông dụng và quan trọng để giải phương trình hàm trên tập R. Đó là phương pháp thế và phương pháp sử dụng tính chất ánh xạ. I. Phương pháp thế trong giải phương trình hàm. 1. Một số lưu ý khi sử dụng phương pháp thế. 2. Các ví dụ. 3. Bài tập vận dụng. 4. Bài tập củng cố. II. Sử dụng tính chất ánh xạ để giải phương trình hàm. 1. Nhắc lại một số khái niệm và tính chất của ánh xạ. 1.1. Ánh xạ. 1.2. Đơn ánh, toàn ánh, song ánh. 1.3. Ánh xạ ngược của một song ánh. 1.4. Ánh xạ hợp. 2. Các ví dụ. 2.1. Sử dụng tính đơn ánh giải phương trình hàm. 2.2. Sử dụng tính toàn ánh giải phương trình hàm. 2.3. Sử dụng tính song ánh giải phương trình hàm. 3. Bài tập vận dụng. 4. Bài tập củng cố.