Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Trắc nghiệm VD - VDC nguyên hàm, tích phân và ứng dụng - Đặng Việt Đông

Với mục đích hỗ trợ các em học sinh khối 12 trong quá trình học tập nâng cao các dạng toán trong chương trình Giải tích 12 chương 3 – nguyên hàm, tích phân và ứng dụng, ôn tập hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán, thầy Đặng Việt Đông biên soạn cuốn tài liệu trắc nghiệm vận dụng – vận dụng cao chuyên đề nguyên hàm, tích phân và ứng dụng. Tài liệu trắc nghiệm VD – VDC nguyên hàm, tích phân và ứng dụng – Đặng Việt Đông gồm 159 trang với các bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng ở mức độ vận dụng và vận dụng cao, được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường, sở GD&ĐT, đề tham khảo – đề minh họa – đề chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo, các bài tập về nguyên hàm, tích phân và ứng dụng được phân tách thành các dạng toán cụ thể, có đáp án và lời giải chi tiết. [ads] Các dạng toán được đề cập trong tài liệu trắc nghiệm VD – VDC nguyên hàm, tích phân và ứng dụng – Đặng Việt Đông: Vấn đề 1 . Nguyên hàm. Dạng toán 1. Phương pháp nguyêm hàm đổi biến số. Dạng toán 2. Phương pháp nguyên hàm từng phần. Dạng toán 3. Nguyên hàm hàm ẩn. Vấn đề 2 . Tích phân. Dạng toán 1. Sử dụng định nghĩa, tính chất và tích phân cơ bản. Dạng toán 2. Phương pháp tích phân đổi biến số. + Đổi biến số dạng 1. + Đổi biến số dạng 2. Dạng toán 3. Tích phân hàm ẩn phương pháp đổi biến. + Tích phân hàm ẩn đổi biến dạng 1. + Tích phân hàm ẩn đổi biến dạng 2. + Tích phân hàm ẩn đổi biến dạng 3. + Tích phân hàm ẩn đổi biến dạng 4. + Tích phân hàm ẩn đổi biến dạng 5. + Tích phân hàm ẩn đổi biến dạng 6. Dạng toán 4. Tích phân từng phần. + Tích phân từng phần dạng 1. + Tích phân từng phần dạng 2. Dạng toán 5. Tích phân hàm ẩn phương pháp từng phần. Dạng toán 6. Tích phân hàm ẩn. Dạng toán 7. Giá trị lớn nhất, giá trị nhỏ nhất, bất đẳng thức tích phân. Vấn đề 3 . Ứng dụng của nguyên hàm – tích phân. Dạng toán 1. Ứng dụng tính diện tích. Dạng toán 2. Ứng dụng tích phân với hàm số. Dạng toán 3. Ứng dụng thể tích. Dạng toán 4. Bài toán thực tế và ứng dụng diện tích. Dạng toán 5. Bài toán thực tế và ứng dụng thể tích. Dạng toán 6. Ứng dụng thực tế khác. Xem thêm : + Trắc nghiệm VD – VDC hàm số – Đặng Việt Đông + Trắc nghiệm VD – VDC mũ – logarit – Đặng Việt Đông

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm các công thức cơ bản về tích phân
Tài liệu gồm 14 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề các công thức cơ bản về tích phân, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. I. LÝ THUYẾT TRỌNG TÂM. 1. Khái niệm hình thang cong. 2. Tích phân là gì? II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm nguyên hàm của hàm lượng giác
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề nguyên hàm của hàm lượng giác, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. A. LÝ THUYẾT 1. Một số công thức lượng giác cần nhớ. 2. Một số nguyên hàm lượng giác cơ bản. 3. Các dạng nguyên hàm lượng giác thường gặp. + Dạng 1: Nguyên hàm m n I sin x cos x dx. + Dạng 2: Nguyên hàm m n dx I sin x cos x. + Dạng 3: Nguyên hàm lượng giác của hàm tanx và cotx. + Dạng 4: Nguyên hàm sử dụng công thức biến đổi tích thành tổng. + Dạng 5: Nguyên hàm dx I a sin x b cos x c. B. VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm nguyên hàm của hàm hữu tỉ
Tài liệu gồm 22 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề nguyên hàm của hàm hữu tỉ, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. A. LÝ THUYẾT I. Các công thức cần nhớ. II. Nguyên hàm dạng P x dx I Q x. + Dạng 1: P x dx I ax b. + Dạng 2: 2 mx n I dx ax bx c. + Dạng 3: P x dx I Q x với 3 2 Q x ax bx cx d. + Dạng 4: Tham khảo và nâng cao: 4 2 P x dx I x a trong đó bậc của P(x) nhỏ hơn 4. + Dạng 5: Tham khảo và nâng cao: Một số nguyên hàm hữu tỷ khi Q(x) là đa thức bậc 6. B. VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm nguyên hàm từng phần
Tài liệu gồm 23 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề nguyên hàm từng phần, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. A. LÝ THUYẾT TRỌNG TÂM Một số dạng nguyên hàm từng phần thường gặp: + Dạng 1: I P x mx n dx ln trong đó P x là đa thức. Theo quy tắc ta đặt ln u mx n dv P x dx. + Dạng 2: sin cos x I P x dx x trong đó P x là đa thức. Theo quy tắc ta đặt sin cos u Px x dv dx x. + Dạng 3: ax b I P x e dx trong đó P x là đa thức. Theo quy tắc ta đặt ax b u Px dv a dx. + Dạng 4: sin cos x x I e dx x. Theo quy tắc ta đặt sin cos x x u x dv e dx. B. VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.