Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Phạm Hùng Hải

Tài liệu gồm 107 trang, được biên soạn bởi thầy giáo Phạm Hùng Hải, trình bày lý thuyết cần nhớ, các dạng toán thường gặp và bài tập tự luyện chuyên đề hàm số lũy thừa, hàm số mũ và hàm số lôgarit (Toán 12 phần Giải tích chương 2). MỤC LỤC : Chương 2 . HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT 1. §1 – LŨY THỪA 1. A LÝ THUYẾT CẦN NHỚ 1. B CÁC DẠNG TOÁN THƯỜNG GẶP 2. + Dạng 1. Tính giá trị biểu thức 2. + Dạng 2. Rút gọn biểu thức liên quan đến lũy thừa 3. + Dạng 3. So sánh hai lũy thừa 4. C BÀI TẬP TỰ LUYỆN 6. §2 – HÀM SỐ LŨY THỪA 9. A LÝ THUYẾT CẦN NHỚ 9. B CÁC DẠNG TOÁN THƯỜNG GẶP 9. + Dạng 1. Tìm tập xác định của hàm số lũy thừa 9. + Dạng 2. Tìm đạo hàm của hàm số lũy thừa 12. + Dạng 3. Đồ thị của hàm số lũy thừa 14. C BÀI TẬP TỰ LUYỆN 15. §3 – LÔGARIT 18. A LÝ THUYẾT CẦN NHỚ 18. B CÁC DẠNG TOÁN CƠ BẢN 19. + Dạng 1. So sánh hai lôgarit 19. + Dạng 2. Công thức, tính toán lôgarit 20. + Dạng 3. Phân tích biểu thức lôgarit theo các lo-ga-rit cho trước 22. + Dạng 4. Xác định một số nguyên dương có bao nhiêu chữ số 23. + Dạng 5. Tổng hợp biến đổi lôgarit nâng cao 24. C BÀI TẬP TỰ LUYỆN 29. §4 – HÀM SỐ MŨ, HÀM SỐ LÔGARIT 34. A LÝ THUYẾT CẦN NHỚ 34. B CÁC DẠNG TOÁN CƠ BẢN 36. + Dạng 1. Tìm tập xác định 36. + Dạng 2. Tính đạo hàm 38. + Dạng 3. Giá trị lớn nhất và giá trị nhỏ nhất 41. + Dạng 4.Các bài toán liên quan đến đồ thị 42. C BÀI TẬP TỰ LUYỆN 46. §5 – PHƯƠNG TRÌNH MŨ, PHƯƠNG TRÌNH LOGARIT CƠ BẢN 49. A LÝ THUYẾT CẦN NHỚ 49. B CÁC DẠNG TOÁN THƯỜNG GẶP 50. + Dạng 1. Giải phương trình mũ cơ bản, phương pháp đưa về cùng cơ số 50. + Dạng 2. Giải phương trình mũ bằng phương pháp đặt ẩn phụ 52. + Dạng 3. Giải phương trình mũ bằng phương pháp lôgarít hóa 54. + Dạng 4. Giải phương trình lôgarit cơ bản, phương pháp đưa về cùng cơ số 55. + Dạng 5. Giải phương trình lôgarít bằng phương pháp đặt ẩn phụ 57. + Dạng 6. Giải phương trình mũ và lôgarít bằng phương pháp hàm số 59. C BÀI TẬP TỰ LUYỆN 63. §6 – BẤT PHƯƠNG TRÌNH MŨ, BẤT PHƯƠNG TRÌNH LOGARIT CƠ BẢN 68. A LÝ THUYẾT CẦN NHỚ 68. B CÁC DẠNG TOÁN THƯỜNG GẶP 69. + Dạng 1. Giải bất phương trình mũ cơ bản, phương pháp đưa về cùng cơ số 69. + Dạng 2. Giải bất phương trình mũ bằng phương pháp đặt ẩn phụ 72. + Dạng 3. Giải bất phương trình logarit cơ bản, phương pháp đưa về cùng cơ số 74. + Dạng 4. Giải bất phương trình lôgarit bằng phương pháp đặt ẩn phụ 76. + Dạng 5. Bài toán lãi kép 77. C BÀI TẬP TỰ LUYỆN 80. §7 – PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH MŨ, LOGARIT CÓ CHỨA THAM SỐ 83. A CÁC DẠNG TOÁN THƯỜNG GẶP 83. + Dạng 1. Phương trình có nghiệm đẹp – Định lý Vi-ét 83. + Dạng 2. Phương trình không có nghiệm đẹp – Phương pháp hàm số 88. + Dạng 3. Bất phương trình – Phương pháp hàm số 92. B BÀI TẬP TỰ LUYỆN 96. §8 – ĐỀ TỔNG ÔN 99. A ĐỀ SỐ 1 99. Bảng đáp án 102. B ĐỀ SỐ 2 103. Bảng đáp án 105.

Nguồn: toanmath.com

Đọc Sách

Phương pháp nâng lũy thừa trong bài toán phương trình hàm số Logarit - Nguyễn Đình Hoàn
Tài liệu gồm 25 trang giới thiệu phương pháp nâng lũy thừa trong bài toán phương trình hàm số Logarit do tác giả Nguyễn Đình Hoàn biên soạn. Tài liệu gồm 5 ví dụ và 12 bài toán áp dụng có lời giải chi tiết. Cách 1: Nâng lũy thừa không hoàn toàn Cách 2: Nâng lũy thừa hoàn toàn Cách 3: Nâng lũy thừa hoàn toàn kết hợp với ẩn phụ Các ví dụ mẫu được giải chi tiết kèm theo phần bình luận, rút kinh nghiệm sau mỗi bài toán giúp bạn đọc hiểu rõ và biết cách vận dụng hợp lý vào các bài toán khác. [ads]
Các phương pháp giải PT - BPT - HPT Mũ và Logarit - Nguyễn Trung Kiên
Tài liệu Các phương pháp giải phương trình – bất phương trình – hệ phương trình Mũ và Logarit của thầy Nguyễn Trung Kiên gồm 54 trang. Tài liệu tóm gọn các phương pháp giải và một số ví dụ mẫu của PT-BPT-HPT Mũ và Logarit.
Chuyên đề phương trình mũ và logarit - Nguyễn Thành Long
Tài liệu chuyên đề phương trình mũ và logarit của tác giả Nguyễn Thành Long gồm 179 trang, gồm các dạng bài toán phương trình – bất phương trình – hệ phương trình – phương trình chứa tham số mũ và logarit có hướng dẫn và lời giải chi tiết. Các bài toán được phân thành nhiều dạng khác nhau dựa vào phương pháp giải.
Phương trình Mũ và Logarit - Đặng Thành Nam
Phương trình Mũ và Logarit – Đặng Thành Nam.