Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra khảo sát lớp 9 môn Toán năm 2021 2022 phòng GD ĐT Thanh Trì Hà Nội

Nội dung Đề kiểm tra khảo sát lớp 9 môn Toán năm 2021 2022 phòng GD ĐT Thanh Trì Hà Nội Bản PDF - Nội dung bài viết Đề kiểm tra khảo sát lớp 9 môn Toán năm 2021-2022 phòng GD ĐT Thanh Trì Hà Nội Đề kiểm tra khảo sát lớp 9 môn Toán năm 2021-2022 phòng GD ĐT Thanh Trì Hà Nội Xin chào quý thầy, cô giáo và các em học sinh lớp 9! Hôm nay, chúng ta sẽ cùng tìm hiểu về đề kiểm tra khảo sát chất lượng môn Toán lớp 9 năm học 2021-2022 do phòng Giáo dục và Đào tạo UBND huyện Thanh Trì, thành phố Hà Nội tổ chức. Bài thi bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài là 120 phút. Để giúp các em chuẩn bị tốt cho kỳ thi, đề thi đã được cung cấp đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Kỳ thi sẽ diễn ra vào ngày 26 tháng 05 năm 2022. Chúng ta hãy cùng xem qua một số câu hỏi mẫu trong đề thi: Trong việc đóng gói 600 tập vở tặng các bạn vùng cao, lớp 9A dự định sử dụng một số thùng carton cùng loại. Tuy nhiên, sau khi đóng vở vào các thùng, có 3 thùng bị hỏng nên mỗi thùng còn lại phải đóng thêm 10 tập vở nữa mới hết. Hãy tính số thùng carton ban đầu lớp 9A dự định sử dụng và số tập vở dự định đóng trong mỗi thùng. Một nón Huế có đường kính đáy bằng 40cm và độ dài đường sinh là 30cm. Người ta làm mặt xung quanh hình nón bằng 3 lớp lá khô. Hãy tính diện tích lá cần dùng để tạo nên một chiếc nón Huế như vậy. Cho đường tròn (O; R) và dây cung AB không đi qua tâm O. Từ điểm S thuộc tia đối của tia AB vẽ hai tiếp tuyến SC, SD đến đường tròn (O) với C, D lần lượt là hai tiếp điểm và C thuộc cung nhỏ AB. Hãy chứng minh các quan hệ trong bài toán. Hy vọng rằng đề thi sẽ giúp các em học sinh lớp 9 rèn luyện và nâng cao kiến thức môn Toán một cách hiệu quả. Chúc các em thi tốt!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng Toán 9 năm 2022 - 2023 phòng GDĐT Sóc Sơn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Sóc Sơn, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 30 tháng 03 năm 2023.
Đề khảo sát Toán 9 năm 2022 - 2023 phòng GDĐT Quảng Xương - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quảng Xương, tỉnh Thanh Hoá (mã đề B); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 phòng GD&ĐT Quảng Xương – Thanh Hoá : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình: y n xn 1 2 (với n là tham số). Tìm n để đường thẳng (d) và đường thẳng y x 2 cắt nhau tại một điểm nằm trên trục tung. + Cho phương trình: x2 – 4x + m – 2 = 0. Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn: x1(2×1 + x2) – 8 = 4m + (x2 – 4)2. + Cho tam giác MNK nhọn (MN < MK) nội tiếp đường tròn (O; R). Các đường cao NE, KF của tam giác cắt nhau tại H (E thuộc MK, F thuộc MN). a) Chứng minh: Bốn điểm N, K, E, F cùng thuộc một đường tròn. b) Kẻ đường kính MA của đường tròn (O). Chứng minh: MA vuông góc với EF và NHKA là hình bình hành. c) Giả sử: NK cố định và M di chuyển trên cung lớn NK sao cho tam giác MNK luôn là tam giác nhọn. Tìm vị trí điểm M để diện tích tam giác EMH lớn nhất. Tính giá trị lớn nhất đó theo R khi NK R 3.
Đề khảo sát Toán 9 lần 7 năm 2022 - 2023 trường Trần Quốc Toản - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 7 năm học 2022 – 2023 trường TH & THCS Trần Quốc Toản, tỉnh Bắc Ninh; đề thi mã đề 137, gồm 05 trang, hình thức 40% trắc nghiệm (40 câu) + 60% tự luận (04 câu), thời gian làm bài 120 phút. Trích dẫn Đề khảo sát Toán 9 lần 7 năm 2022 – 2023 trường Trần Quốc Toản – Bắc Ninh : + Cho các đường thẳng (d1): y = 2x – 2; (d2): y = -4/3x – 2 và đường thẳng (d3) có hệ số góc bằng 1/3 và đi qua điểm M(3;4). Ba đường thẳng trên đôi một cắt nhau tại A, B, C. Biết rằng mỗi đơn vị trên trục tọa độ có độ dài 1cm. Bán kính r của đường tròn nội tiếp ABC (làm tròn đến chữ số thập phân thứ hai) bằng? + Cho đường tròn (O;R). Khẳng định nào sau đây là sai? A. Đường kính vuông góc với dây thì đi qua trung điểm của dây ấy. B. Dây cung lớn nhất có độ dài bằng 2R. C. Điểm A nằm trên (O;R) khi và chỉ khi OA = R. D. Đường kính đi qua trung điểm của một dây thì vuông góc với dây ấy. + Lớp 9A dự định trồng 420 cây xanh. Đến ngày thực hiện có 7 bạn không tham gia do được triệu tập học bồi dưỡng đội tuyển học sinh giỏi của nhà trường nên mỗi bạn còn lại phải trồng thêm 3 cây mới đảm bảo kế hoạch đặt ra. Hỏi lớp 9A có bao nhiêu học sinh.
Đề khảo sát chất lượng Toán 9 năm 2022 - 2023 phòng GDĐT Đông Anh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Đông Anh, thành phố Hà Nội; kỳ thi được diễn ra vào sáng thứ Năm ngày 06 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2022 – 2023 phòng GD&ĐT Đông Anh – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai người cùng làm một công việc thì sau 18 giờ sẽ xong. Nếu người thứ nhất làm một mình trong 6 giờ, sau đó một mình người thứ hai làm trong 8 giờ thì cả hai người làm được 2/5 công việc. Hỏi nếu mỗi người làm một mình thì sau bao lâu xong công việc? + Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y = 20(x + 1) − 2m – 19 và parabol (P): y = x². a) Tìm tọa độ giao điểm của (d) và (P) khi m = 10. b) Tìm m để (d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung. + Cho đường tròn (O) và đường thẳng d không đi qua tâm O cắt đường tròn tại hai điểm A và B. Gọi C là điểm thuộc đường thẳng d sao cho A nằm giữa B và C. Vẽ đường kính PQ vuông góc với dây AB tại D (P thuộc cung lớn AB). Tia CP cắt đường tròn (O) tại điểm thứ hai là I (I khác P), AB cắt IQ tại K. 1. Chứng minh tứ giác PDKI nội tiếp. 2. Chứng minh KB.IQ = BQ.BI. 3. Chứng minh IK là đường phân giác trong của tam giác AIB và AC/BC = AK/BK. 4. Cho ba điểm A, B, C cố định và đường tròn (O) thay đổi nhưng luôn đi qua A, B. Chứng minh đường thẳng IQ luôn đi qua một điểm cố định.