Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán tháng 2 năm 2023 trường THCS Thái Thịnh Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán tháng 2 năm 2023 trường THCS Thái Thịnh Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán tháng 2 năm 2023 trường THCS Thái Thịnh Hà Nội Đề khảo sát Toán tháng 2 năm 2023 trường THCS Thái Thịnh Hà Nội Chào đón quý thầy cô và các em học sinh lớp 9, một đề khảo sát chất lượng môn Toán lớp 9 tháng 2 năm học 2022 – 2023 sẽ được tổ chức tại trường THCS Thái Thịnh, quận Đống Đa, thành phố Hà Nội vào ngày 24 tháng 02 năm 2023. Dưới đây là một số câu hỏi mẫu trong đề khảo sát: 1) Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai người cùng làm một công việc thì sau 7 giờ 12 phút hoàn thành xong công việc. Nếu người thứ nhất làm trong 5 giờ và người thứ hai làm trong 6 giờ thì họ làm được 3/4 công việc. Hỏi mỗi người làm một mình thì bao lâu xong công việc? 2) Cho hệ phương trình. Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x và y là hai số đối nhau. 3) Cho đường thẳng d và đường tròn (O;R) không có điểm chung. Kẻ OH vuông góc d tại H. Điểm A thuộc d và không trùng với điểm H. Qua A kẻ hai tiếp tuyến AB, AC tới (O) (B và C là các tiếp điểm). BC cắt OA, OH lần lượt tại M và N. Đoạn thẳng OA cắt (O) tại I. Chứng minh các tính chất của hình trên. Đây là những câu hỏi mang tính thách thức và yêu cầu sự tư duy logic, khả năng giải quyết vấn đề của các em học sinh lớp 9. Chúng tôi hy vọng rằng đề khảo sát sẽ giúp các em rèn luyện kỹ năng Toán một cách hiệu quả và đạt kết quả tốt trong học tập. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát đợt 3 Toán 9 năm 2018 - 2019 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến các em học sinh khối lớp 9 đề khảo sát đợt 3 Toán 9 năm 2018 – 2019 phòng GD&ĐT Kim Thành – Hải Dương, đề có cấu trúc giống với một đề tuyển sinh vào lớp 10 môn Toán, mục đích nhằm giúp các em học sinh lớp 9 được rèn luyện, chuẩn bị cho kỳ thi quan trọng này. Đề khảo sát đợt 3 Toán 9 năm 2018 – 2019 phòng GD&ĐT Kim Thành – Hải Dương gồm 01 trang với 05 bài toán dạng đề tự luận, học sinh làm bài trong 120 phút. Trích dẫn đề khảo sát đợt 3 Toán 9 năm 2018 – 2019 phòng GD&ĐT Kim Thành – Hải Dương : + Cho phương trình x^2 – 2mx + m^2 – m + 1 = 0. Tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn: x1^2 + 2mx2 = 9. [ads] + Khoảng cách giữa hai bến sống A và B là 50km. Một ca nô đi từ bến A đến bến B, nghỉ 20 phút ở bến B rồi quay lại bến A. Kể từ lúc khởi hành đến khi về tới bến A hết tất cả là 7 giờ. Hãy tìm vận tốc riêng của ca nô, biết vận tốc của dòng nước là 4km/h. + Từ điểm A ở ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB, AC (B và C là tiếp điểm) và cát tuyến AMN (M nằm giữa A và N) sao cho cung MBN nhỏ hơn cung MCN. Gọi H là trung điểm của đoạn thẳng MN. Đường thẳng BC cắt đoạn thẳng OA và tia OH thứ tự tại I và L. Chứng minh rằng: a) Bốn điểm B, H, O, C cùng nằm trên một đường tròn. b) R^2 = OH.OL c) INC = ANB.
Đề khảo sát Toán 9 năm học 2018 - 2019 trường THCS Cổ Loa - Hà Nội
THCS. giới thiệu đến các em học sinh lớp 9 đề kiểm tra khảo sát Toán 9 năm học 2018 – 2019 trường THCS Cổ Loa – Hà Nội, kỳ thi được diễn ra vào thứ Bảy ngày 13 tháng 04 năm 2019 nhằm đánh giá chất lượng học tập môn Toán của học sinh khối lớp 9 trong giai đoạn cuối học kỳ 2 năm học 2018 – 2019, đây cũng là dịp để các em tự kiểm chứng năng lực bản thân trước khi bước vào kỳ thi tuyển sinh vào lớp 10 THPT năm học 2019 – 2020. Đề khảo sát Toán 9 năm học 2018 – 2019 trường THCS Cổ Loa – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, học sinh làm bài kiểm tra khảo sát Toán 9 trong thời gian 120 phút. Trích dẫn đề khảo sát Toán 9 năm học 2018 – 2019 trường THCS Cổ Loa – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai người cùng làm chung một công việc thì sau 6 giờ xong. Nếu làm riêng xong công việc đó thì người thứ nhất làm nhanh hơn người thứ hai là 5 giờ. Tính thời gian mỗi người làm riêng xong công việc đó? [ads] + Trong mặt phẳng xOy cho Parabol (P): y = x^2 và đường thẳng (d): y = 2(m – 3)x + 4. a. Chứng minh rằng đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt A và B với mọi giá trị của m. b. Gọi I là giao điểm của (d) và trục Oy. Tìm m để A và B đối xứng nhau qua I. + Cho đường tròn (O;R) đường kính AB và điểm C thuộc (O) sao cho AC < BC. Tiếp tuyến tại C cắt các tiếp tuyến tại A và B lần lượt tại E và F. 1. Chứng minh tứ giác AECO nội tiếp được. 2. Gọi H là giao điểm của EO và AC. Chứng minh: OH.OE = R^2. 3. BC cắt AB tại D, OD cắt AC tại I, tia DH cắt AB tại K. Gọi P là điểm đối xứng của H qua E. Chứng minh tứ giác AHDP là hình bình hành và IK // AD. 4. IK cắt EO tại M. Chứng minh ba điểm A, M, F thẳng hàng.
Đề kiểm tra kỳ 2 Toán 9 năm 2018 2019 trường chuyên Hà Nội Amsterdam
THCS. giới thiệu đến bạn đọc đề kiểm tra kỳ 2 Toán 9 năm 2018 – 2019 trường chuyên Hà Nội – Amsterdam, đề thi gồm 05 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2019.
Đề kiểm tra khảo sát Toán 9 năm 2018 - 2019 phòng GDĐT Thanh Xuân - Hà Nội
Đề kiểm tra khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Thanh Xuân – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào thứ Sáu ngày 15 tháng 03 năm 2019. Trích dẫn đề kiểm tra khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Thanh Xuân – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một đội công nhân theo kế hoạch cần phải sản xuất 900 sản phẩm trong một số ngày quy định. Do mỗi ngày đội công nhân đó sản xuất vượt mức 3 sản phẩm nên đội công nhân đã hoàn thành vượt mức kế hoạch 90 sản phẩm và sớm hơn thời gian quy định 3 ngày. Hỏi theo kế hoạch, mỗi ngày đội công nhân phải sản xuất bao nhiêu sản phẩm? [ads] + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2(m – 1)x + 5 – 2m (m là tham số) và parabol (P): y = x^2. a) Chứng minh rằng với mọi giá trị của m đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. b) Tìm giá trị của m để (d) cắt (P) tại hai điểm phân biệt có tổng tung độ bằng 30. + Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn sao cho OA = 2R. Từ A kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). M là điểm bất kỳ trên cung nhỏ BC, tiếp tuyển tại M của đường tròn cắt các đường thẳng AB, AC lần lượt tại E và F. a) Chứng minh tứ giác ABOC là tứ giác nội tiếp. b) Chứng minh tam giác ABC là tam giác đều. c) Chứng minh khi M di động trên cung nhỏ BC thì chu vi tam giác AEF không đổi. Tính chu vi tam giác AEF theo R. d) Tìm vị trí của M trên cung nhỏ BC để đoạn EF có độ dài nhỏ nhất.