Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lần 1 Toán 12 năm 2022 - 2023 trường THPT Lê Văn Hưu - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển học sinh giỏi lần 1 môn Toán 12 năm học 2022 – 2023 trường THPT Lê Văn Hưu, tỉnh Thanh Hóa; đề thi có đáp án trắc nghiệm mã đề 121. Trích dẫn Đề HSG lần 1 Toán 12 năm 2022 – 2023 trường THPT Lê Văn Hưu – Thanh Hóa : + Một sinh viên ở trọ sử dụng một xô đựng nước có hình dạng và kích thước như hình vẽ, trong đó đáy xô hình tròn có bán kính bằng 20 cm, miệng xô là đường tròn có bán kính 30 cm, chiều cao xô là 80 cm. Mỗi tháng sinh viên đó dùng hết 20 xô nước đầy. Hỏi sinh viên đó phải trả bao nhiêu tiền nước mỗi tháng, biết giá nước do chủ nhà trọ quy định là 8000 đồng/m3 (số tiền được làm tròn đến đơn vị đồng)? + Bạn B vay một số tiền tại ngân hàng Agribank và trả góp số tiền đó trong vòng 3 tháng với mức lãi suất là 1% /tháng. Bạn B bắt đầu hoàn nợ, tháng thứ nhất bạn B trả ngân hàng số tiền là 10 triệu đồng, tháng thứ 2 bạn B trả ngân hàng 20 triệu đồng và tháng cuối bạn B trả ngân hàng 30 triệu đồng thì hết nợ. Vậy số tiền bạn B đã vay của ngân hàng là bao nhiêu. Chọn kết quả gần đúng nhất? + Trong không gian cho hình vuông ABCD cạnh bằng 2a. Gọi E, F lần lượt là trung điểm của các cạnh AB và CD. Khi quay hình vuông đó quanh EF ta được một hình trụ tròn xoay. Thể tích của khối trụ tròn xoay giới hạn bởi hình trụ nói trên bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán cấp trường năm 2020 2021 trường chuyên Lam Sơn Thanh Hóa
Nội dung Đề thi HSG Toán cấp trường năm 2020 2021 trường chuyên Lam Sơn Thanh Hóa Bản PDF Đề thi HSG Toán cấp trường năm học 2020 – 2021 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa gồm 02 bài thi được tổ chức trong hai ngày: ngày thi thứ nhất gồm 04 bài toán, ngày thi thứ hai gồm 03 bài toán, thời gian làm bài mỗi bài thi là 180 phút. Trích dẫn đề thi HSG Toán cấp trường năm 2020 – 2021 trường chuyên Lam Sơn – Thanh Hóa : + Cho tam giác ABC nội tiếp đường tròn w và l là đường thẳng không có điểm chung với w. Ký hiệu P là hình chiếu vuông góc của tâm đường tròn w lên l. Các đường thẳng BC, CA, AB lần lượt cắt đường thẳng l tại các điểm X, Y, Z khác P. Chứng minh rằng tâm của các đường tròn ngoại tiếp tam giác AXP, BYP và CZP thẳng hàng. + Bảng ô vuông gồm m hàng và n cột, với mỗi ô vuông con được đặt một trong hai số: 0 hoặc 1. Một bảng được gọi là “tốt” nếu tổng các số của mỗi dòng, của mỗi cột, là số chẵn. Hỏi: a) Có bao nhiêu bảng số như trên? b) Có bao nhiêu bảng “tốt”? + Cho tam giác nhọn ABC nội tiếp (O). Giả sử OA cắt các đường cao từ B và C của tam giác ABC lần lượt tại P, Q. Gọi H là trực tâm tam giác ABC. Chứng minh rằng tâm đường tròn ngoại tiếp của tam giác PQH thuộc một trung tuyến của tam giác ABC.
Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2020 2021 sở GD ĐT Hà Nam
Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2020 2021 sở GD ĐT Hà Nam Bản PDF Ngày … tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Hà Nam tổ chức kỳ thi chọn học sinh giỏi lớp 12 và thành lập đội tuyển tham dự kỳ thi chọn học sinh giỏi Quốc gia môn Toán năm học 2020 – 2021. Đề thi chọn học sinh giỏi Toán lớp 12 năm học 2020 – 2021 sở GD&ĐT Hà Nam gồm 01 trang với 05 bài toán tự luận, thang điểm 20, thời gian làm bài 180 phút. Trích dẫn đề thi chọn học sinh giỏi Toán lớp 12 năm học 2020 – 2021 sở GD&ĐT Hà Nam : + Xếp 35 học sinh, trong đó có bốn bạn Dũng, Minh, Công, Đoàn thành một hàng ngang. Hỏi có tất cả bao nhiêu cách xếp hàng, mà trong mỗi cách xếp hàng không có ba bạn nào trong bốn bạn Dũng, Minh, Công, Đoàn đứng ở ba vị trí liên tiếp. + Cho hàm số f(x) = (x^3 – 3x^2 + 3x + 5)/(x + 1). 1. Chứng minh đồ thị hàm số có ba điểm cực trị không thẳng hàng. 2. Gọi A, B, C là ba điểm cực trị của đồ thị hàm số. Tính diện tích tam giác ABC. + Cho tứ giác ABCD cố định, có hai đường chéo AC, BD cắt nhau tại P. Đường trung trực của các đoạn thẳng AC và BD cắt nhau tại K. Một đường thẳng d thay đổi đi qua K, cắt đường tròn ngoại tiếp tam giác OAB tại Q, R. Chứng minh rằng trực tâm của tam giác POR luôn nằm trên một đường tròn cố định, khi đường thẳng d thay đổi.
Đề thi HSG lớp 12 môn Toán năm 2020 2021 trường THPT chuyên Lê Khiết Quảng Ngãi
Nội dung Đề thi HSG lớp 12 môn Toán năm 2020 2021 trường THPT chuyên Lê Khiết Quảng Ngãi Bản PDF Thứ Bảy ngày 19 tháng 09 năm 2020, trường THPT chuyên Lê Khiết, tỉnh Quảng Ngãi tổ chức kỳ thi chọn học sinh giỏi lớp 12 môn Toán năm học 2020 – 2021. Đề thi HSG Toán lớp 12 năm 2020 – 2021 trường THPT chuyên Lê Khiết – Quảng Ngãi gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn đề thi HSG Toán lớp 12 năm 2020 – 2021 trường THPT chuyên Lê Khiết – Quảng Ngãi : + Cho một đa giác đều có 170 đường chéo. Chọn ngẫu nhiên 3 đỉnh từ các đỉnh của đa giác đó. Tính xác suất để tam giác tạo ra từ các đỉnh được chọn là tam giác vuông không cân. + Có bao nhiêu số nguyên dương n < 2021 để đa thức x^2^n + x + 1 chia hết cho đa thức x^2 + x + 1? + Trên bảng có ghi mười số 1; 2; 3; 4; . . . ; 10. Ở mỗi bước ta xóa đi hai số a, b rồi thêm vào số mới a + b + ab/f(a;b) với f(a;b) là tổng tất cả các số còn ghi trên bảng trừ hai số a, b. Cứ làm như thế cho đến khi trên bảng chỉ còn hai số x, y (x >= y). a) Gọi Sk là tổng của tất cả các tích của các cặp số còn ghi trên bảng ở bước thứ k. Chứng minh rằng Si = Sk với mọi i, k. b) Tìm giá trị lớn nhất có thể có của x.
Đề thi thử HSG Toán vòng 1 lần 2 năm 2020 2021 trường chuyên Hùng Vương Bình Dương
Nội dung Đề thi thử HSG Toán vòng 1 lần 2 năm 2020 2021 trường chuyên Hùng Vương Bình Dương Bản PDF Ngày … tháng 09 năm 2020, trường THPT chuyên Hùng Vương, tỉnh Bình Dương tổ chức kỳ thi thử cho đội tuyển học sinh giỏi môn Toán vòng 1 lần 2 năm học 2020 – 2021. Đề thi thử HSG Toán vòng 1 lần 2 năm 2020 – 2021 trường chuyên Hùng Vương – Bình Dương gồm có 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề), thí sinh không được sử dụng tài liệu và máy tính khi làm bài. Trích dẫn đề thi thử HSG Toán vòng 1 lần 2 năm 2020 – 2021 trường chuyên Hùng Vương – Bình Dương : + Cho tam giác ABC nhọn nội tiếp đường tròn (O), có trực tâm H. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Đường tròn (MNP) lần lượt cắt các đường tròn (MCA), (MAB) tại điểm thứ hai là E, F. Giả sử ME, MF theo thứ tự cắt AC, AB tại K, L. a) Chứng minh rằng OH vuông góc với KL tại điểm S. b) Gọi G là trọng tâm của tam giác ABC. Các điểm Y, Z lần lượt là hình chiếu của B, C lên AC, AB. Gọi X là giao điểm của KZ và LY. Chứng minh rằng A, G, S, X cùng nằm trên một đường tròn. + Tìm tất cả các đa thức P(x) với hệ số thực sao cho P(a)^2 + P(b)^2 + P(c)^2 với mọi bộ số (a;b;c) thỏa mãn ab + bc + ca + 1 = 0. + Tìm tất cả các bộ ba số tự nhiên (m;n;k) thỏa mãn 5^m + 7^n = k^3.