Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT Quốc gia 2020 môn Toán lần 1 cụm NBHL - Ninh Bình

Thứ Bảy ngày 11 tháng 01 năm 2020, cụm các trường THPT tại thành phố Ninh Bình và huyện Hoa Lư, tỉnh Ninh Bình tổ chức kỳ thi thử THPT Quốc gia môn Toán lần thứ nhất năm học 2019 – 2020. Đề thi thử THPT Quốc gia 2020 môn Toán lần 1 cụm NBHL – Ninh Bình mã đề 123 gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, kỳ thi nhằm giúp các em học sinh khối 12 tại các trường THPT trong cụm được thử sức và rèn luyện, chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2020, đề thi có đáp án. Trích dẫn đề thi thử THPT Quốc gia 2020 môn Toán lần 1 cụm NBHL – Ninh Bình : + Người ta bỏ ba quả bóng bàn cùng kích thước vào trong một chiếc hộp hình trụ có đáy bằng hình tròn lớn của quả bóng bàn và chiều cao bằng ba lần đường kính bóng bàn. Gọi S1 là tổng diện tích của ba quả bóng bàn, S2 là diện tích xung quanh của hình trụ. Tỉ số S1/S2 bằng? + Một hộp chứa 6 viên bi đỏ, 5 viên bi vàng và 4 viên bi xanh. Lấy ngẫu nhiên 4 viên bi. Tính xác suất để 4 viên bi được lấy ra có đủ ba màu và không có hai viên nào có số thứ tự trùng nhau. [ads] + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy, đường thẳng SC tạo với đáy một góc bằng 60 độ. Thể tích của khối chóp S.ABC bằng? + Cho một tứ diện đều SABC có chiều cao h. Ở ba góc của tứ diện, người ta cắt đi các tứ diện đều bằng nhau có chiều cao x để khối đa diện còn lại có thể tích bằng một nửa thể tích khối tứ diện đều ban đầu. Tìm x. + Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Các điểm E, F lần lượt là trung điểm C’B’ và C’D’. Tính diện tích thiết diện của hình lập phương ABCD.A’B’C’D’ cắt bởi mặt phẳng (AEF).

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Kim Liên - Hà Nội lần 2
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Kim Liên – Hà Nội lần 2 mã đề 002 được biên soạn bám sát đề tham khảo Toán 2018 của Bộ GD&ĐT, đề gồm 6 trang với cấu trúc 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút, kỳ thi được tổ chức vào ngày 01/04/2018. Trích dẫn đề thi thử THPT Quốc gia 2018 môn Toán : + Trong trận chung kết bóng đá phải phân định thắng thua bằng đá luân lưu 11m. Huấn luyện viên của mỗi đội cần trình với trọng tài một danh sách sắp thứ tự 5 cầu thủ trong 11 cầu thủ để đá luân lưu 5 quả 11m. Hỏi huấn luyện viên của mỗi đội có bao nhiêu cách lựa chọn. [ads] + Một vật nặng treo bởi một chiếc lò xo, chuyển động lên xuống qua vị trí cân bằng (hình vẽ). Khoảng cách h từ vật đến vị trí cân bằng ở thời điểm t giây được tính theo công thức h = |d| trong đó d = 5sin6t – 4cos6t với d được tính bằng cm. Ta quy ước rằng d > 0 khi vật ở trên vị trí cân bằng, d < 0 khi vật ở dưới vị trí cân bằng. Hỏi trong giây đầu tiên, có bao nhiêu thời điểm vật xa vị trí cân bằng nhất. + Cho tứ diện đều ABCD có cạnh bằng 1. Trên các cạnh AB và CD lần lượt lấy các điểm M và N sao cho vtMA + vtMB = vt0 và vtNC = -2.vtND. Mặt phẳng (P) chứa MN và song song với AC chia khối tứ diện ABCD thành 2 khối đa diện, trong đó khối đa diện chứa đỉnh A có thể tích V. Tính V.
Đề thi thử Toán 2018 THPT Quốc gia trường THPT Cầu Xe - Hải Dương lần 2
Đề thi thử Toán 2018 THPT Quốc gia trường THPT Cầu Xe – Hải Dương lần 2 mã đề 202 gồm 7 trang với 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút, đề thi được biên soạn theo chuẩn cấu trúc đề tham khảo Toán 2018 của Bộ Giáo dục và Đào tạo, đề thi thử Toán 2018 có đáp án . Trích dẫn đề thi thử Toán 2018 THPT Quốc gia : + Anh Nam muốn mua một ngôi nhà trị giá 500 triệu đồng sau 3 năm nữa. Biết rằng lãi suất hàng năm vẫn không đổi là 8% một năm. Vậy ngay từ bây giờ số tiền ít nhất anh Nam phải gửi tiết kiệm vào ngân hàng theo thể thức lãi kép để có đủ tiền mua nhà (kết quả làm tròn đến hàng triệu) là? [ads] + Cho hai hình vuông ABCD và ABEF có cạnh bằng a , lần lượt nằm trên hai mặt phẳng vuông góc với nhau. Lấy điểm H trên đoạn DE sao cho HD = 3HE. Gọi S là điểm đối xứng với B qua H. Thể tích của khối đa diện ABCDSEF bằng? + Có 5 học sinh lớp A, 5 học sinh lớp B được xếp ngẫu nhiên vào hai dãy ghế đối diện nhau mỗi dãy 5 ghế (xếp mỗi học sinh một ghế). Tính xác suất để xếp được 2 học sinh bất kì cạnh nhau và đối diện nhau khác lớp.
Đề thi thử Toán 2018 cụm 5 trường THPT chuyên khu vực đồng bằng sông Hồng
Đề thi thử Toán 2018 cụm 5 trường THPT chuyên khu vực đồng bằng sông Hồng mã đề 001 gồm 8 trang với 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút, đề thi thử Toán có lời giải chi tiết . Trích dẫn đề thi thử Toán 2018 : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, I là trung điểm cạnh SC. Khẳng định nào sau đây sai? A. Đường thẳng IO song song với mặt phẳng (SAD). B. Mặt phẳng (IBD) cắt hình chóp S.ABCD theo thiết diện là một tứ giác. C. Đường thẳng IO song song với mặt phẳng (SAB). D. Giao tuyến của hai mặt phẳng (IBD) và (SAC) là IO. [ads] + Trước kỳ thi học kỳ 2 của lớp 11 tại trường FIVE, giáo viên Toán lớp FIVE A giao cho học sinh đề cương ôn tập gồm có 2n bài toán, n là số nguyên dương lớn hơn 1. Đề thi học kỳ của lớp FIVE A sẽ gồm 3 bài toán được chọn ngẫu nhiên trong số 2n bài toán đó. Một học sinh muốn không phải thi lại, sẽ phải làm được ít nhất 2 trong số 3 bài toán đó. Học sinh TWO chỉ giải chính xác được đúng 1 nửa số bài trong đề cương trước khi đi thi, nửa còn lại học sinh đó không thể giải được. Tính xác suất để TWO không phải thi lại. + Cho hàm số y = (x – 1)/(x + 2), gọi d là tiếp tuyến với đồ thị hàm số tại điểm có hoành độ bằng m – 2. Biết đường thẳng d cắt tiệm cận đứng của đồ thị hàm số tại điểm A(x1; y1) và cắt tiệm cận ngang của đồ thị hàm số tại điểm B(x2; y2). Gọi S là tập hợp các số m sao cho x2 + y1 = -5. Tính tổng bình phương các phần tử của S.
Đề thi thử THPTQG 2018 môn Toán trường THPT chuyên Ngoại Ngữ - Hà Nội
Đề thi thử THPTQG 2018 môn Toán trường THPT chuyên Ngoại Ngữ – Hà Nội mã đề 209 được biên soạn theo chuẩn đề tham khảo môn Toán 2018 do Bộ Giáo dục và Đào tạo ban hành từ tháng 1 năm 2018, đề gồm 6 trang với 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút, kỳ thi được diễn ra vào sáng ngày 31/03/2018. Trích dẫn đề thi thử Toán 2018 trường chuyên Ngoại Ngữ – Hà Nội : + Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng b (a khác b). Phát biểu nào dưới đây là sai? A. Đoạn thẳng MN là đường vuông góc chung của AB và SC (M và N lần lượt là trung điểm của AB và SC). B. Góc giữa các cạnh bên và mặt đáy bằng nhau. C. Hình chiếu của S lên mặt phẳng (ABC) là trọng tâm của tam giác ABC. D. SA vuông góc với BC. [ads] + Cho mặt cầu (S) bán kính R = 5cm. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8π cm. Bốn điểm A, B, C, D thay đổi sao cho các điểm A, B, C thuộc đường tròn (C), điểm D thuộc (S) (D không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Tìm thể tích lớn nhất của tứ diện ABCD. + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x – 1)^2 + (y – 2)^2 + (z – 2)^2 = 9 và hai điểm M(4;-4;2) và N(6;0;6). Gọi E là điểm thuộc mặt cầu (S) sao cho EM + EN đạt giá trị lớn nhất. Viết phương trình tiếp diện của mặt cầu (S) tại E.