Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 10 môn Toán năm 2018 2019 trường THPT Nam Tiền Hải Thái Bình

Nội dung Đề thi HSG lớp 10 môn Toán năm 2018 2019 trường THPT Nam Tiền Hải Thái Bình Bản PDF - Nội dung bài viết Đề thi HSG lớp 10 Toán năm 2018-2019 trường THPT Nam Tiền Hải Thái Bình Đề thi HSG lớp 10 Toán năm 2018-2019 trường THPT Nam Tiền Hải Thái Bình Đề thi HSG Toán lớp 10 năm 2018 - 2019 trường THPT Nam Tiền Hải - Thái Bình được thiết kế theo định dạng tự luận, bao gồm 01 trang với 05 bài toán khó. Học sinh được cấp 180 phút để hoàn thành bài thi, với ngày thi diễn ra vào ngày 06 tháng 03 năm 2019. Dưới đây là một số câu hỏi trích dẫn từ đề thi HSG Toán lớp 10 năm 2018 - 2019 trường THPT Nam Tiền Hải - Thái Bình: 1. Trong hệ trục tọa độ Oxy, hãy tìm phương trình của đường cao AD và phân giác trong CE của tam giác ABC với A(4;-1), B(1;5), C(-4;-5). 2. Với B(0;1), C(3;0), đường phân giác trong góc BAC của tam giác ABC cắt trục Oy tại M(0;-7/3), chia tam giác thành hai phần có tỉ lệ diện tích 10/11 (với phần chứa điểm B có diện tích nhỏ hơn phần chứa điểm C). Hãy tính T = a^2 + b^2 với A(a;b) và a < 0. 3. Hãy chứng minh rằng: a.sinA + b.sinB + c.sinC = 2(ma^2 + mb^2 + mc^2)/3R với mọi tam giác ABC (a = BC, b = AC, c = AB; ma, mb, mc lần lượt là độ dài đường trung tuyến hạ từ A, B, C; R bán kính đường tròn ngoại tiếp tam giác ABC). Đề thi này tập trung vào việc áp dụng các kiến thức về hình học và tính toán trong giải quyết các bài toán phức tạp, đòi hỏi học sinh phải có kiến thức chắc chắn và khả năng suy luận logic tốt. Qua đó, đề thi giúp học sinh phát triển kỹ năng tư duy, khả năng giải quyết vấn đề và xử lý tình huống.

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 10 năm 2022 - 2023 lần 1 trường chuyên KHTN - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán lớp 10 năm học 2022 – 2023 lần 1 trường THPT chuyên KHTN, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 08 tháng 08 năm 2022. Trích dẫn đề thi HSG Toán 10 năm 2022 – 2023 lần 1 trường chuyên KHTN – Hà Nội : + Tìm tất cả các số nguyên n sao cho 5n – 1, 55n + 11 là hai số chính phương và 55n2 – 149 là số nguyên tố. + Xét 100 số nguyên a1, a2, …, a99, a100 có tính chất sau: a1 = a100 = 0 và với mỗi số nguyên dương 2 < i < 99 ta đều có ai > (ai-1 + ai+1)/2. Tìm giá trị nhỏ nhất có thể có của a23? + Cho hình chữ nhật ABCD nội tiếp đường tròn (O). Điểm P thuộc cung nhỏ CD của (O). M là trung điểm CD. Lấy Q thuộc đường thẳng AD sao cho PQ và PM vuông góc. Trên BQ lấy R sao cho PR vuông góc với CD. a) Chứng minh rằng PB và OM cắt nhau trên đường tròn đường kính QM. b) Chứng minh rằng tứ giác PCRD và tam giác RAB có diện tích bằng nhau. c) Hỏi có tất cả bao nhiêu vị trí của P để RA vuông góc RB? Hãy giải thích.
Đề thi học sinh giỏi Toán 10 năm 2021 - 2022 cụm trường THPT - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp cụm môn Toán 10 năm học 2021 – 2022 cụm trường THPT trực thuộc sở Giáo dục và Đào tạo Hà Nội.
Đề thi chọn học sinh giỏi Toán 10 năm 2021 - 2022 sở GDĐT Hà Nam
Đề thi chọn học sinh giỏi môn Toán 10 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hà Nam gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi chọn học sinh giỏi Toán 10 năm 2021 – 2022 sở GD&ĐT Hà Nam : + Cho parabol 2 P y x m x m 2 2 1 và đường thẳng 2 d y m x m m 1 5 3 (với m là tham số). Biết đường thẳng d cắt đồ thị P tại hai điểm phân biệt A B. Tìm điều kiện của m để AB 26. + Cho phương trình 2 x b x c 2 1 0 với b c. Biết phương trình có hai nghiệm dương 1 2 x x thỏa mãn 1 2 x x 4. a) Chứng minh 2 2 4 2 b b c b) Tìm giá trị lớn nhất của biểu thức 2 P b c b b b 6 3 1 2022. + Cho ABC nội tiếp đường tròn O R và có trọng tâm là G. Các đường thẳng AG BG CG theo thứ tự cắt đường tròn O tại điểm thứ hai là M N P. Biết 1 1 1 2 sin sin sin R.
Đề thi học sinh giỏi tỉnh Toán 10 năm 2021 - 2022 sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 10 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi tỉnh Toán 10 năm 2021 – 2022 sở GD&ĐT Hà Tĩnh: + Trong hệ tọa độ Oxy, cho tam giác ABC vuông tại A, gốc tọa độ O là trung điểm của cạnh BC. Đường phân giác trong góc B có phương trình (d): x + 2y – 5 = 0, đường thẳng AC đi qua điểm I(6;2). Tìm tọa độ các đỉnh của tam giác ABC. + Cho tam giác ABC vuông tại A (BC = a, CA = b, AB = c), đường cao AH, I là điểm thuộc đoạn AH sao cho AI = 2IH. a) Chứng minh rằng a2IA + 2b2IB + 2c2IC = 0. b) Biết góc ACB = 30°, tìm giá trị nhỏ nhất của biểu thức k = 2MA + 3MB + 7MC với M là điểm bất kỳ trong mặt phẳng chứa tam giác. + Cho hàm số f(x) = (x2 + mx + 1)/(x2 + x + 1) (m là tham số). Tìm m để với mọi a, b, c thì f(a), f(b), f(c) là độ dài ba cạnh của một tam giác.