Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập đề thi học sinh giỏi Toán 12 sở GDĐT Quảng Bình (2013 - 2023)

Tài liệu gồm 76 trang, được tổng hợp bởi thầy giáo Nguyễn Minh Hiếu, tuyển tập 10 đề thi chọn học sinh giỏi môn Toán lớp 12 sở Giáo dục và Đào tạo tỉnh Quảng Bình (từ năm 2013 đến năm 2023), có đáp án và lời giải chi tiết. Mục lục : PHẦN I . ĐỀ THI 1. 1 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2022 – 2023 (Trang 3). 2 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2021 – 2022 (Trang 8). 3 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2020 – 2021 (Trang 9). 4 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2019 – 2020 (Trang 10). 5 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2018 – 2019 (Trang 11). 6 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2017 – 2018 (Trang 12). 7 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2016 – 2017 (Trang 13). 8 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2015 – 2016 (Trang 14). 9 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2014 – 2015 (Trang 15). 10 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2013 – 2014 (Trang 16). PHẦN II . LỜI GIẢI 17. 1 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2022 – 2023 (Trang 19). 2 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2021 – 2022 (Trang 35). 3 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2020 – 2021 (Trang 39). 4 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2019 – 2020 (Trang 43). 5 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2018 – 2019 (Trang 47). 6 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2017 – 2018 (Trang 52). 7 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2016 – 2017 (Trang 56). 8 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2015 – 2016 (Trang 61). 9 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2014 – 2015 (Trang 65). 10 Đề thi chọn học sinh giỏi lớp 12 Quảng Bình năm học 2013 – 2014 (Trang 69).

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi thành phố Toán 12 năm 2022 - 2023 sở GDĐT Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp thành phố môn Toán 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào ngày 28 tháng 09 năm 2022. Trích dẫn Đề thi học sinh giỏi thành phố Toán 12 năm 2022 – 2023 sở GD&ĐT Hà Nội : + Cho hàm số y = x^3 – 3x + 1 có đồ thị (C). 1) Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đi qua điểm M(2;3). 2) Tìm tất cả giá trị của a để qua điểm A(a;-1) kẻ được ba tiếp tuyến đến đồ thị (C) trong đó có hai tiếp tuyến vuông góc với nhau. + Gọi A là tập hợp các số tự nhiên có 8 chữ số được lập từ các chữ số 1, 2, 3, 4, 5, 6 sao cho các chữ số 1 và 2 xuất hiện hai lần, các chữ số còn lại xuất hiện một lần. Chọn ngẫu nhiên một số thuộc A. Tính xác suất để số được chọn có các chữ số giống nhau không đứng cạnh nhau. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và cạnh bên SA vuông góc với mặt phẳng (ABCD). Góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 60°. 1) Tính khoảng cách giữa hai đường thẳng SC và BD. 2) Gọi M và N là hai điểm lần lượt nằm trên hai đoạn thẳng SD và BC thỏa mãn MS/MD = NC/NB. Tìm giá trị nhỏ nhất của độ dài đoạn thẳng MN.
Đề thi HSG Toán 12 năm 2022 - 2023 trường THPT chuyên Lê Quý Đôn - Bình Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 năm học 2022 – 2023 trường THPT chuyên Lê Quý Đôn, tỉnh Bình Định; kỳ thi được diễn ra vào thứ Sáu ngày 16 tháng 09 năm 2022. Trích dẫn Đề thi HSG Toán 12 năm 2022 – 2023 trường THPT chuyên Lê Quý Đôn – Bình Định : + Xét 300 viên bi mà mỗi viên bi có một màu và tổng tất cả các màu của tất cả 300 viên bi là 25. Một viên bi được gọi là viên bi đặc biệt nếu trong 299 viên bi còn lại có không quá 9 viên bi cùng màu với nó. Hỏi trong số 300 viên bi có tối đa bao nhiêu viên bi đặc biệt. + Cho tam giác ABC không cân, có (I) là đường tròn nội tiếp, các tiếp điểm trên BC, CA, AB lần lượt là D, E, F; AD cắt EF tại J. Các điểm M, N di chuyển trên (I) sao cho M, N, J thẳng hàng, DM cắt AC tại P, DN cắt AB tại Q. Gọi U, V lần lượt là giao điểm của các cặp đường thẳng (ME;FN), (MF;EN). a. Gọi G là giao điểm của EF và BC, chứng minh G, U, V thẳng hàng. b. Chứng minh MN, PQ, UV đồng quy. + Cho p là một số nguyên tố. Chứng minh rằng với a là số nguyên dương sao cho 1 p a chia hết cho p thì 1 p a cũng chia hết cho 2 p.
Đề thi học sinh giỏi Toán 12 năm 2022 - 2023 sở GDĐT Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi văn hóa môn Toán 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Trị; đề thi gồm 05 bài toán hình thức tự luận, thời gian làm bài 180 phút (không kể thời gian giao đề), kỳ thi được diễn ra vào thứ Tư ngày 21 tháng 09 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 12 năm 2022 – 2023 sở GD&ĐT Quảng Trị : + Khi nuôi cá thí nghiệm trong hồ, một nhà sinh vật học thấy rằng: nếu trên mỗi đơn vị diện tích mặt hồ có n con cá (n < 12) thì khối lượng trung bình mỗi con cá sau một vụ thu hoạch bằng 2 60 5 n n (gam). Hỏi phải thả bao nhiêu con cá trên một đơn vị diện tích mặt hồ để thu được khối lượng cá lớn nhất? + Chọn ngẫu nhiên 4 học sinh trong một nhóm gồm 6 nam và 4 nữ để làm trực nhật. Tính xác suất để trong 4 học sinh được chọn có nhiều nhất 3 học sinh nam. + Cho hàm số y f x liên tục trên thỏa mãn f f 7 16 1. Chứng minh rằng phương trình 4 1 2 0 f x f x có nghiệm trên đoạn 2 5.
Đề thi chọn học sinh giỏi Toán 12 năm 2022 - 2023 sở GDĐT Hà Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi lớp 12 và thành lập đội tuyển tham dự kỳ thi chọn học sinh giỏi Quốc gia môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam. Trích dẫn đề thi chọn học sinh giỏi Toán 12 năm 2022 – 2023 sở GD&ĐT Hà Nam : + Cho tam giác ABC có AB < AC và đường tròn nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Phân giác trong của góc BAC cắt các đường thẳng DE, DF lần lượt tại X, Y. Gọi S, T là các điểm nằm trên cạnh BC sao cho XSY = XTY = 90°. 1. Chứng minh rằng BX, CY là các tiếp tuyến của đường tròn đường kính XY. 2. Chứng minh rằng đường tròn ngoại tiếp tam giác AST tiếp xúc với đường tròn ngoại tiếp và đường tròn nội tiếp tam giác ABC. + Xét các số a, b, c nguyên, c >= 0 thỏa mãn an + 2n là ước của bn + c với mọi n nguyên dương. 1. Chứng minh rằng c = 0 hoặc c = 1. 2. Khi c = 1, chứng minh rằng a và b không đồng thời là các số chính phương. + Với mỗi số tự nhiên n >= 4, ký hiệu an là số nhỏ nhất các tập con có 3 phần tử của tập hợp Sn = {1; 2; 3; …; n} sao cho với mọi tập con có 4 phần tử của Sn luôn chứa ít nhất một trong các tập con có 3 phần tử này. 1. Xác định a6. 2. Chứng minh rằng với mọi số tự nhiên n >= 4 thì an >= 1/4.nC3.