Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu Toán 9 chủ đề đồ thị của hàm số y ax + b (a khác 0)

Tài liệu gồm 23 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề đồ thị của hàm số y = ax + b (a khác 0) trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Đồ thị của hàm số bậc nhất. 2. Cách vẽ đồ thị hàm số bậc nhất y = ax + b (a khác 0). 3. Chú ý. B. Bài tập và các dạng toán. Dạng 1 : Vẽ đồ thị hàm số bậc nhất. Dạng 2 : Tìm tọa độ giao điểm của hai đường thẳng. Cách giải: Cho hai đường thẳng d y ax b và d y ax b. Để tìm tọa độ giao điểm của d và d’, ta làm như sau: Cách 1: Dùng phương pháp đồ thị (thường sử dụng trong trường hợp d và d’ cắt nhau tại điểm có tọa độ nguyên). – Vẽ d và d’ trên cùng một hệ trục tọa độ. – Xác định tọa độ giao điểm trên hình vẽ. – Chứng tỏ tọa độ giao điểm đó cùng thuộc d và d’. Cách 2: Dùng phương pháp đại số. – Xét phương trình hoành độ giao điểm của d và d’: ax b a x b. – Từ phương trình hoành độ giao điểm, tìm được x và thay vào phương trình của d (hoặc d’) để tìm y. – Kết luận tọa độ giao điểm của d và d’. Dạng 3 : Xét tính đồng quy của ba đường thẳng. Cách giải: Chú ý: Ba đường thẳng đồng quy là ba đường thẳng phân biệt và cùng đi qua 1 điểm. Để xét tính đồng quy của ba đường thẳng (phân biệt) cho trước, ta làm như sau: + Tìm tọa độ giao điểm của 2 trong 3 đường thẳng đã cho. + Kiểm tra xem nếu giao điểm vừa tìm được thuộc đường thẳng còn lại thì kết luận ba đường thẳng đó đồng quy. Dạng 4 : Tính khoảng cách từ gốc tọa độ O đến một đường thẳng không đi qua O. Cách giải: Để tính khoảng cách từ O đến đường thẳng d (không đi qua O) ta làm như sau: Bước 1: Tìm A B lần lượt là giao điểm của d với Ox và Oy. Bước 2: Gọi H là hình chiếu vuông góc của O trên d. Khi đó: 222 1 11 OH OA OB. Dạng 5 : Tìm điểm cố định mà hàm số luôn đi qua phụ thuộc vào tham số m. Cách giải: 1. Khái niệm điểm cố định: Điểm Mxy là điểm cố định của (d y ax b) (a b phụ thuộc vào tham số m a 0) khi và chỉ khi điểm M luôn thuộc (d) với mọi điều kiện của tham số m. Hoặc tương đương với điều kiện: 0 0 y ax b với mội điều kiện của tham số. 2. Cách tìm điểm cố định. Gọi Ix y là điểm cố định của 0 d y ax b m. Biến đổi 0 0 y ax b về dạng Ax y m Bx y hoặc 2 0 0 Ax y m Bx y m Cx y. Từ đó tìm được 0 0 x y rồi kết luận. 3. Chú ý: Cách tính khoảng cách từ Ax y đến Bx y trên hệ trục tọa độ Oxy 2 2 12 12 AB y y x. Dạng 6 : Tìm tham số m sao cho khoảng cách từ gốc tọa độ đến đường thẳng cho trước là lớn nhất. Cách giải: Cho đường thẳng (d y ax b) phụ thuộc tham số m. Muốn tìm m để khoảng cách từ O đến d là lớn nhất, ta có thể làm theo một trong hai cách sau. Cách 1: Phương pháp hình học. – Gọi A B lần lượt là giao điểm của d với Ox và Oy; H là hình chiếu vuông góc của O trên d. – Ta có khoảng cách từ O đến d là OH và được tính bởi công thức sau: 222 1 11 OH OB OC. – Từ đó tìm điều kiện của m để OH đạt giá trị lớn nhất. Cách 2: Dùng phương pháp điểm cố định. – Tìm được I là điểm cố định mà d luôn đi qua. – Gọi H là hình chiếu vuông góc của O trên d OH OI hằng số d ⇒ OH OI. – Ta có: OH OI d max là đường thẳng qua I và vuông góc với OI. Từ đó tìm được tham số m. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.

Nguồn: toanmath.com

Đọc Sách

Tài liệu lớp 9 môn Toán chủ đề hệ hai phương trình bậc nhất hai ẩn
Nội dung Tài liệu lớp 9 môn Toán chủ đề hệ hai phương trình bậc nhất hai ẩn Bản PDF - Nội dung bài viết A. Tóm tắt lý thuyếtB. Bài tập và các dạng toán Tài liệu học Toán lớp 9 - Hệ hai phương trình bậc nhất hai ẩn Tài liệu này gồm 11 trang, cung cấp kiến thức cơ bản, các dạng toán và bài tập liên quan đến chủ đề hệ hai phương trình bậc nhất hai ẩn trong chương trình môn Toán lớp 9. Mỗi bài toán được kèm theo đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết 1. Khái niệm về hệ phương trình bậc nhất hai ẩn Hệ phương trình bậc nhất hai ẩn có dạng ax + by = c và a'x + b'y = c'. Trong đó, a, b, a', b' là các số thực và x, y là các ẩn. Nếu hai phương trình có nghiệm chung (x, y), thì (x, y) được gọi là nghiệm của hệ phương trình. Nếu không có nghiệm chung, hệ phương trình sẽ là vô nghiệm. Giải hệ phương trình là tìm tất cả các nghiệm của hệ đó. 2. Minh họa hình học của tập nghiệm của hệ phương trình bậc nhất hai ẩn Tập nghiệm của hệ phương trình được biểu diễn bởi các điểm chung của hai đường thẳng. Nếu hai đường thẳng cắt nhau, hệ phương trình có một nghiệm duy nhất. Nếu hai đường thẳng song song, hệ phương trình sẽ vô nghiệm. Nếu hai đường thẳng trùng nhau, hệ phương trình sẽ có vô số nghiệm. 3. Tổng quát về hệ phương trình bậc nhất hai ẩn Hệ phương trình có nghiệm duy nhất khi hệ số không bằng nhau. Hệ phương trình vô nghiệm khi hệ số bằng nhau nhưng hệ số tự do không bằng nhau. Hệ phương trình có vô số nghiệm khi hệ số và hệ số tự do đều bằng nhau. 4. Hệ phương trình tương đương Hai hệ phương trình được xem là tương đương nếu chúng có cùng tập nghiệm. B. Bài tập và các dạng toán Dạng 1: Dự đoán số nghiệm của hệ phương trình bậc nhất hai ẩn Giúp học sinh xác định số nghiệm có thể của hệ phương trình dựa vào các hệ số. Dạng 2: Kiểm tra một cặp số có phải là nghiệm của hệ phương trình hay không Gợi ý cách xác định xem một cặp số có phải là nghiệm của hệ phương trình hay không. Dạng 3: Giải hệ phương trình bằng phương pháp đồ thị Hướng dẫn vẽ đồ thị của hai đường thẳng và xác định nghiệm của hệ phương trình từ đó. Bài tập trắc nghiệm và bài tập về nhà cũng được cung cấp để học sinh có thể tự luyện tập và kiểm tra kiến thức của mình. Tài liệu còn được cung cấp dưới dạng file Word để giáo viên dễ dàng sử dụng trong quá trình giảng dạy.
Tài liệu lớp 9 môn Toán chủ đề giải hệ phương trình bằng phương pháp thế
Nội dung Tài liệu lớp 9 môn Toán chủ đề giải hệ phương trình bằng phương pháp thế Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9: Giải hệ phương trình bằng phương pháp thếTóm tắt lý thuyếtBài tập và dạng toán Tài liệu học Toán lớp 9: Giải hệ phương trình bằng phương pháp thế Tài liệu này bao gồm 19 trang chi tiết về kiến thức cần nhớ và các dạng toán liên quan đến việc giải hệ phương trình bằng phương pháp thế trong chương trình môn Toán lớp 9. Mỗi bài toán đều đi kèm đáp án và lời giải chi tiết, giúp học sinh hiểu rõ hơn về phương pháp này. Tóm tắt lý thuyết Quy tắc thế trong giải hệ phương trình là quá trình biểu diễn một ẩn theo ẩn khác và thế vào phương trình khác để giảm số lượng ẩn. Nếu phương trình là ax + b = 0, ta xác định nghiệm dựa vào a và b. Bài tập và dạng toán Trên tài liệu có cung cấp các dạng toán phổ biến liên quan đến giải hệ phương trình bằng phương pháp thế. Ví dụ về cách giải hệ phương trình bậc nhất hai ẩn, biến đổi về hệ phương trình quy về bậc nhất, giải bằng phương pháp đặt ẩn phụ và tìm điều kiện tham số. Học sinh sẽ được hướng dẫn cụ thể và rõ ràng về cách giải từng dạng toán, giúp họ nắm vững kiến thức và nâng cao kỹ năng giải toán một cách hiệu quả.
Tài liệu lớp 9 môn Toán chủ đề giải hệ phương trình bằng phương pháp cộng đại số
Nội dung Tài liệu lớp 9 môn Toán chủ đề giải hệ phương trình bằng phương pháp cộng đại số Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 chủ đề giải hệ phương trình Tài liệu học Toán lớp 9 chủ đề giải hệ phương trình Để giúp các bạn học sinh lớp 9 nắm vững kiến thức và kỹ năng giải hệ phương trình bằng phương pháp cộng đại số, tài liệu này cung cấp một cách tổng quan và chi tiết về chủ đề này. Tài liệu gồm 20 trang, bao gồm: A. Tóm tắt lý thuyết: Đây là phần tóm lược những kiến thức cơ bản cần nhớ khi giải hệ phương trình bằng phương pháp cộng đại số. B. Bài tập và các dạng toán: Phần này bao gồm các dạng toán thường gặp khi giải hệ phương trình bằng phương pháp cộng đại số. Cụ thể: Dạng 1: Giải hệ phương trình bằng phương pháp cộng đại số, với các cách giải cụ thể như trừ vế với vế khi hệ số của ẩn bằng nhau, cộng vế với vế khi hệ số của ẩn đối nhau, hoặc nhân vế với số thích hợp. Dạng 2: Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn, và cách giải chi tiết từng bước. Dạng 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ, với các bước hướng dẫn chi tiết. Dạng 4: Tìm điều kiện của tham số để hệ phương trình thỏa mãn điều kiện cho trước, và cách giải theo các kiến thức đã học. Phần cuối cùng của tài liệu là Bài tập về nhà, giúp học sinh ôn tập và củng cố kỹ năng giải toán sau khi học xong tài liệu. Trong tài liệu, đáp án và lời giải chi tiết được cung cấp để học sinh có thể tự kiểm tra và tự học. Đây là tài liệu hữu ích để giúp học sinh lớp 9 nắm vững kiến thức và kỹ năng giải hệ phương trình bằng phương pháp cộng đại số, từ đó tự tin hơn khi làm bài tập và kiểm tra.
Tài liệu lớp 9 môn Toán chủ đề giải bài toán bằng cách lập hệ phương trình
Nội dung Tài liệu lớp 9 môn Toán chủ đề giải bài toán bằng cách lập hệ phương trình Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán: Học cách giải bài toán bằng hệ phương trình Tài liệu lớp 9 môn Toán: Học cách giải bài toán bằng hệ phương trình Tài liệu lớp 9 môn Toán chủ đề giải bài toán bằng cách lập hệ phương trình bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề giải bài toán bằng cách lập hệ phương trình trong chương trình môn Toán lớp 9. Tài liệu này có 19 trang, đầy đủ đáp án và lời giải chi tiết. Trước khi giải bài toán bằng hệ phương trình, bạn cần làm theo các bước sau: Bước 1: Lập hệ phương trình. Đầu tiên, chọn các ẩn số và đặt điều kiện, đơn vị thích hợp cho các ẩn số. Sau đó, biểu diễn các đại lượng chưa biết theo các ẩn và các đại lượng đã biết. Cuối cùng, lập hệ phương trình biểu thị sự tương quan giữa các đại lượng. Bước 2: Giải hệ phương trình vừa tìm được. Bước 3: Kết luận bài toán. Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thỏa mãn điều kiện của ẩn, sau đó kết luận bài toán. Tài liệu này cũng cung cấp các dạng toán phổ biến khi giải bằng hệ phương trình như toán về quan hệ giữa các số, chuyển động trên sông nước, chuyển động trên đường bộ, toán có nội dung hình học, toán làm chung công việc và toán về tỉ số phần trăm. Với cách giải chi tiết và dễ hiểu trong tài liệu, bạn sẽ nắm vững cách giải các bài toán bằng hệ phương trình và áp dụng linh hoạt vào thực tế. File WORD (dành cho quý thầy, cô) giúp bạn tiện lợi khi muốn in ấn hoặc lưu trữ.