Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu Toán 9 chủ đề đồ thị của hàm số y ax + b (a khác 0)

Tài liệu gồm 23 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề đồ thị của hàm số y = ax + b (a khác 0) trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Đồ thị của hàm số bậc nhất. 2. Cách vẽ đồ thị hàm số bậc nhất y = ax + b (a khác 0). 3. Chú ý. B. Bài tập và các dạng toán. Dạng 1 : Vẽ đồ thị hàm số bậc nhất. Dạng 2 : Tìm tọa độ giao điểm của hai đường thẳng. Cách giải: Cho hai đường thẳng d y ax b và d y ax b. Để tìm tọa độ giao điểm của d và d’, ta làm như sau: Cách 1: Dùng phương pháp đồ thị (thường sử dụng trong trường hợp d và d’ cắt nhau tại điểm có tọa độ nguyên). – Vẽ d và d’ trên cùng một hệ trục tọa độ. – Xác định tọa độ giao điểm trên hình vẽ. – Chứng tỏ tọa độ giao điểm đó cùng thuộc d và d’. Cách 2: Dùng phương pháp đại số. – Xét phương trình hoành độ giao điểm của d và d’: ax b a x b. – Từ phương trình hoành độ giao điểm, tìm được x và thay vào phương trình của d (hoặc d’) để tìm y. – Kết luận tọa độ giao điểm của d và d’. Dạng 3 : Xét tính đồng quy của ba đường thẳng. Cách giải: Chú ý: Ba đường thẳng đồng quy là ba đường thẳng phân biệt và cùng đi qua 1 điểm. Để xét tính đồng quy của ba đường thẳng (phân biệt) cho trước, ta làm như sau: + Tìm tọa độ giao điểm của 2 trong 3 đường thẳng đã cho. + Kiểm tra xem nếu giao điểm vừa tìm được thuộc đường thẳng còn lại thì kết luận ba đường thẳng đó đồng quy. Dạng 4 : Tính khoảng cách từ gốc tọa độ O đến một đường thẳng không đi qua O. Cách giải: Để tính khoảng cách từ O đến đường thẳng d (không đi qua O) ta làm như sau: Bước 1: Tìm A B lần lượt là giao điểm của d với Ox và Oy. Bước 2: Gọi H là hình chiếu vuông góc của O trên d. Khi đó: 222 1 11 OH OA OB. Dạng 5 : Tìm điểm cố định mà hàm số luôn đi qua phụ thuộc vào tham số m. Cách giải: 1. Khái niệm điểm cố định: Điểm Mxy là điểm cố định của (d y ax b) (a b phụ thuộc vào tham số m a 0) khi và chỉ khi điểm M luôn thuộc (d) với mọi điều kiện của tham số m. Hoặc tương đương với điều kiện: 0 0 y ax b với mội điều kiện của tham số. 2. Cách tìm điểm cố định. Gọi Ix y là điểm cố định của 0 d y ax b m. Biến đổi 0 0 y ax b về dạng Ax y m Bx y hoặc 2 0 0 Ax y m Bx y m Cx y. Từ đó tìm được 0 0 x y rồi kết luận. 3. Chú ý: Cách tính khoảng cách từ Ax y đến Bx y trên hệ trục tọa độ Oxy 2 2 12 12 AB y y x. Dạng 6 : Tìm tham số m sao cho khoảng cách từ gốc tọa độ đến đường thẳng cho trước là lớn nhất. Cách giải: Cho đường thẳng (d y ax b) phụ thuộc tham số m. Muốn tìm m để khoảng cách từ O đến d là lớn nhất, ta có thể làm theo một trong hai cách sau. Cách 1: Phương pháp hình học. – Gọi A B lần lượt là giao điểm của d với Ox và Oy; H là hình chiếu vuông góc của O trên d. – Ta có khoảng cách từ O đến d là OH và được tính bởi công thức sau: 222 1 11 OH OB OC. – Từ đó tìm điều kiện của m để OH đạt giá trị lớn nhất. Cách 2: Dùng phương pháp điểm cố định. – Tìm được I là điểm cố định mà d luôn đi qua. – Gọi H là hình chiếu vuông góc của O trên d OH OI hằng số d ⇒ OH OI. – Ta có: OH OI d max là đường thẳng qua I và vuông góc với OI. Từ đó tìm được tham số m. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.

Nguồn: toanmath.com

Đọc Sách

Các dạng toán căn bậc ba Nguyễn Chí Thành
Nội dung Các dạng toán căn bậc ba Nguyễn Chí Thành Bản PDF - Nội dung bài viết Các dạng toán căn bậc ba Nguyễn Chí Thành Các dạng toán căn bậc ba Nguyễn Chí Thành Tài liệu này bao gồm 17 trang tập hợp các bài toán liên quan đến căn bậc ba (hay còn gọi là căn bậc 3) dành cho học sinh lớp 9. Mỗi bài toán được giải chi tiết để giúp học sinh hiểu rõ hơn về chủ đề này. Các dạng toán trong tài liệu bao gồm: Dạng 1: Thực hiện phép tính với căn bậc 3 Dạng 2: Chứng minh các đẳng thức liên quan đến căn bậc 3 Dạng 3: So sánh hai căn bậc 3 với nhau Dạng 4: Giải các phương trình có chứa căn bậc 3 Đây là tài liệu hữu ích giúp học sinh rèn luyện kỹ năng giải toán và nắm vững kiến thức về căn bậc ba. Mong rằng tài liệu sẽ giúp ích cho các em trong quá trình học tập.
Chinh phục lớp 9 môn Toán bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 2)
Nội dung Chinh phục lớp 9 môn Toán bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 2) Bản PDF - Nội dung bài viết Chinh phục lớp 9 môn Toán với sách Đại số Tập 2 Chinh phục lớp 9 môn Toán với sách Đại số Tập 2 Sách "Chinh phục lớp 9 môn Toán" bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 2) là tài liệu hữu ích giúp các học sinh nắm vững kiến thức và phương pháp giải các dạng toán trong chương trình Toán lớp 9. Sách được tổ chức theo từng dạng toán và mỗi bài học đều bao gồm các phần sau: A. Tóm tắt kiến thức cần học: Giúp học sinh hiểu rõ về nội dung cần nắm được trong bài toán và chuẩn bị tinh thần đúng đắn cho quá trình học tập. B. Phương pháp giải các dạng toán: Hướng dẫn chi tiết các phương pháp giải các dạng toán cụ thể, giúp học sinh áp dụng linh hoạt và hiệu quả trong việc giải các bài tập. Các nội dung chính trong sách bao gồm: + Chương 3. Hệ hai phương trình bậc nhất hai ẩn: Đề cập đến phương trình bậc nhất hai ẩn, giải hệ phương trình bậc nhất hai ẩn và cách giải toán bằng cách lập hệ phương trình bậc nhất hai ẩn. + Chương 4. Hàm số y = ax^2 (a khác 0) và phương trình bậc hai một ẩn: Thảo luận về hàm số y = ax^2, phương trình bậc hai một ẩn, cách quy về phương trình bậc hai và phương pháp giải toán bằng lập phương trình. Với cách trình bày rõ ràng, dễ hiểu và sự tổ chức logic, sách Đại số Tập 2 chắc chắn sẽ giúp các học sinh tự tin và thành công trong việc học môn Toán ở cấp độ lớp 9.
Chinh phục lớp 9 môn Toán bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 1)
Nội dung Chinh phục lớp 9 môn Toán bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 1) Bản PDF - Nội dung bài viết Nội dung sách "Chinh phục lớp 9 môn Toán bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 1)" Nội dung sách "Chinh phục lớp 9 môn Toán bằng sơ đồ tư duy Phạm Nguyên (Đại số Tập 1)" Sách được trình bày theo từng dạng toán, giúp học sinh dễ dàng tiếp cận kiến thức. Mỗi bài gồm các phần sau: A. Tóm tắt kiến thức cần học: Giúp học sinh nắm vững những kiến thức cơ bản để giải các dạng toán. B. Phương pháp giải các dạng toán: Hướng dẫn chi tiết cách giải từng bài toán, giúp học sinh áp dụng kiến thức một cách linh hoạt. Các nội dung chính trong sách bao gồm: + Chương 1. Căn thức 1. Căn bậc hai - Căn thức bậc hai 2. Liên hệ giữa phép khai phương và phép nhân, phép chia 3. Biến đổi đơn giản biểu thức chứa căn thức bậc hai 4. Rút gọn biểu thức chứa căn thức bậc hai 5. Căn bậc 3 + Chương 2. Hàm số bậc nhất 1. Khái niệm hàm số 2. Hàm số bậc nhất Qua sơ đồ tư duy Phạm Nguyên, cuốn sách không chỉ giúp học sinh hiểu rõ kiến thức mà còn hướng dẫn cách áp dụng trong thực tế, từ đó giúp học sinh tự tin vượt qua môn Toán trong lớp 9.