Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 lần 4 năm 2022 - 2023 trường Lương Thế Vinh - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 lần 4 năm học 2022 – 2023 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 lần 4 năm 2022 – 2023 trường Lương Thế Vinh – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Tháng thứ nhất hai tổ sản xuất được 500 sản phẩm. Sang tháng thứ hai, do cải tiến kĩ thuật, tổ 1 làm vượt mức 10%, tổ 2 làm vượt mức 15% so với tháng thứ nhất. Vì vậy, tháng thứ hai cả hai tổ đã làm được 564 sản phẩm. Hỏi trong tháng thứ nhất mỗi tổ sản xuất được bao nhiêu sản phẩm? + Trục lăn của một cái lăn sơn có dạng một hình trụ. Đường kính của đường tròn đáy là 8cm, chiều dài trục lăn là 30cm. Sau khi lăn được 10 vòng thì trục lăn tạo trên sân phẳng một diện tích là bao nhiêu? (lấy 3,14). + Cho tam giác ABC có ba góc nhọn, đường cao AD. Đường tròn (O) đường kính BC cắt AC tại E, AD cắt BE tại H. 1) Chứng minh CDHE là tứ giác nội tiếp. 2) Gọi giao điểm của CH với AB là F. Chứng minh F thuộc đường tròn (O) và DA là phân giác của góc EDF. 3) Kẻ các tiếp tuyến AM, AN với (O) (M, N là tiếp điểm), AO cắt MN tại K, đoạn thẳng AH cắt (O) tại P. Gọi I là tâm đường tròn ngoại tiếp OPK. Chứng minh B, C, I thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề thi vào 10 môn Toán năm 2020 - 2021 trường THPT chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán năm 2020 – 2021 trường THPT chuyên Lam Sơn – Thanh Hóa, đề thi có đáp án và lời giải chi tiết, kỳ thi được diễn ra vào ngày 17 tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán năm 2020 – 2021 trường THPT chuyên Lam Sơn – Thanh Hóa : + Trên một đường tròn người ta lấy 2024 điểm phân biệt, các điểm được tô màu xanh và màu đỏ xen kẽ nhau. Tại mỗi điểm ta ghi một số thực khác 0 và 1 sao cho quy tắc sau được thỏa mãn “số ghi tại điểm màu xanh bằng tổng của hai số ghi màu đỏ kể nó; số ghi màu đỏ bằng tích của hai số ghi tại hai điểm màu xanh kế nó”. Tính tổng của 2024 số đó. [ads] + Cho tam giác ABC nhọn có BAC > 45 độ. Về phía ngoài tam giác ABC dựng các hình vuông ABMN và ACPQ. Đường thẳng AQ cắt đoạn thẳng BM tại E, đường thẳng AN cắt đoạn thẳng CP tại F. a) Chứng minh tứ giác EFQN nội tiếp được một đường tròn. b) Gọi I là trung điểm của đoạn thẳng EF. Chứng minh I là tâm đường trong ngoại tiếp tam giác ABC. c) Đường thẳng MN cắt đường thẳng PQ tại D. Các đường tròn ngoại tiếp tam giác DMQ và DNP cắt nhau tại K với K khác D. Các tiếp tuyến của đường tròn ngoại tiếp tam giác ABC tại B và C cắt nhau tại J. Chứng minh bốn điểm D, A, K, J thẳng hàng. + Chứng minh rằng nếu 2^n = 10a + b với a, b, n là các số tự nhiên thỏa mãn 0 < b < 10 và n > 3 thì ab chia hết cho 6.
Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GDĐT Hà Nội (chuyên)
Đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội : + Cho một bảng ô vuông kích thước 6 x 7 (6 hàng, 7 cột) được tạo bởi các ô vuông kích thước 1 x 1. Mỗi ô vuông kích thước 1 x 1 được tô bởi một trong hai màu đen hoặc trắng sao cho trong mọi bảng ô vuông kích thước 2 x 3 hoặc 3 x 2, có ít nhất hai ô vuông kích thước 1 x 1 được tô màu đen có chung cạnh. Gọi m là số ô vuông kích thước 1 x 1 được tô màu đen trong bảng. a) Chỉ ra một cách tô sao cho m = 20. b) Tìm giá trị nhỏ nhất của m. [ads] + Cho tam giác ABC có ba góc nhọn và AB < AC. Gọi (I) là đường tròn nội tiếp tam giác ABC và K là tâm đường tròn bàng tiếp trong góc A của tam giác ABC. Gọi D, E, F lần lượt là chân các đường vuông góc kẻ từ điểm I đến các đường thẳng BC, CA, AB. Đường thẳng AD cắt đường tròn (I) tại hai điểm phân biệt D và M. Đường thẳng qua K song song với đường thẳng AD cắt đường thẳng BC tại N. a) Chứng minh rằng tam giác MFD đồng dạng với tam giác BNK. b) Gọi P là giao điểm của BI và FD. Chứng minh góc BMF bằng góc DMP. c) Chứng minh đường tròn ngoại tiếp tam giác MBC đi qua trung điểm của đoạn thẳng KN. + Cho đa thức P(x) với hệ số thực thỏa mãn P(1) = 3 và P(3) = 7. Tìm đa thức dư trong phép chia đa thức P(x) cho đa thức x^2 – 4x + 3.
Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GDĐT Bình Dương (chuyên)
Đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Bình Dương gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi diễn ra vào thứ Sáu ngày 10 tháng 07 năm 2020, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Bình Dương : + Cho tam giác ABC cân tại A (BAC > 90 độ) nội tiếp đường tròn (O) bán kính R, M là điểm nằm trên cạnh BC sao cho BM = CM. Gọi D là giao điểm của AM và đường tròn (O) với D khác A, H là trung điểm của đoạn thẳng BC. Gọi E là điểm chính giữa cung lớn BC, ED cắt BC tại N. a) Chứng minh rằng MA.MD = MB.MC và BN.CM = BM.CN. b) Gọi I là tâm đường tròn ngoại tiếp tam giác BMD. Chứng minh rằng ba điểm B, I, E thẳng hàng. c) Khi 2AB = R, xác định vị trí của M để 2MA + AD đạt giá trị nhỏ nhất. [ads] + Với các số thực x, y thay đổi thỏa mãn 1 ≤ x ≤ y ≤ 5. Tìm giá trị nhỏ nhất của biểu thức: P = 2(x^2 + y^2) + 4(x – y – xy) + 7. + Tìm tất cả các số nguyên x, y thỏa mãn phương trình x^2 + xy + y^2 = x^2.y^2.
Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GDĐT Lâm Đồng (chuyên Toán)
Thứ Tư ngày 15 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi tuyển sinh vào lớp 10 chuyên môn Toán năm học 2020 – 2021. Đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Lâm Đồng (chuyên Toán) dành cho thí sinh thi vào các lớp chuyên Toán; đề thi gồm có 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Lâm Đồng (chuyên Toán) : + Cho hình thang ABCD (AB //CD), hai đường chéo vuông góc với nhau. Biết AC = 8 cm, BD = 6 cm. Tính chiều cao của hình thang. + Một tổ chức từ thiện cần chia đều một số quyển vở thành các phần quà để tặng cho các cháu nhỏ ở một trung tâm nuôi dạy trẻ mồ côi. Nếu mỗi phần quà giảm 6 quyển vở thì sẽ có thêm 5 phần quà nữa cho các cháu, còn nếu mỗi phần quà giảm 10 quyển vở thì các cháu sẽ có thêm 10 phần quà. Hỏi tổ chức từ thiện trên có bao nhiêu quyển vở. + Cho hai đường tròn (O;R) và đường tròn (O’;R’) tiếp xúc trong tại điểm A (trong đó R > R’). Gọi BC là một dây của đường tròn lớn tiếp xúc với đường tròn nhỏ tại D. Chứng minh rằng AD là tia phân giác của góc BAC.