Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 12 môn Toán lần 4 năm 2020 2021 trường THPT Triệu Sơn 4 Thanh Hóa

Nội dung Đề KSCL lớp 12 môn Toán lần 4 năm 2020 2021 trường THPT Triệu Sơn 4 Thanh Hóa Bản PDF Thứ Năm ngày 10 tháng 06 năm 2021, trường THPT Triệu Sơn 4, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 năm học 2020 – 2021 lần thứ tư; kỳ thi nhằm giúp các em học sinh lớp 12 rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp THPT 2021 môn Toán sắp tới. Đề KSCL Toán lớp 12 lần 4 năm 2020 – 2021 trường THPT Triệu Sơn 4 – Thanh Hóa mã đề 125 gồm 06 trang, đề thi có đáp án. Trích dẫn đề KSCL Toán lớp 12 lần 4 năm 2020 – 2021 trường THPT Triệu Sơn 4 – Thanh Hóa : + Trong đợt hội trại tổ chức kỷ niệm ngày thành lập Đoàn TNCS Hồ Chí Minh tại trường THPT X, Đoàn trường có thực hiện một dự án ảnh trưng bầy trên một pano có dạng Parabol như hình vẽ. Biết rằng Đoàn trường sẽ yêu cầu các lớp gửi hình dự thi và dán lên khu vực hình chữ nhật ABCD. Phần còn lại sẽ trang trí hoa văn cho phù hợp. Chi phí dán hoa văn là 200.000 đồng cho một 2 m bảng. Hỏi chi phí thấp nhất cho việc hoàn tất hoa văn trên pano gần giá trị nào nhất? + Ông Bảo làm mái vòm ở phía trước ngôi nhà của mình bằng vật liệu tôn. Mái vòm đó là một phần của mặt xung quanh của một hình trụ như hình bên dưới. Biết giá tiền của 1 2 m tôn là 300.000 đồng. Hỏi số tiền (làm tròn đến hàng nghìn) mà ông Bảo mua tôn là bao nhiêu? + Trong không gian Oxyz, cho mặt cầu 2 2 2 1 2 3 48 S x y z. Gọi P là mặt phẳng đi qua 2 điểm M (0;0;-4) và N (2;0;0) và cắt (S) theo giao tuyến là đường tròn C. Khối nón N có đỉnh là tâm của S và đáy là đường tròn C có thể tích lớn nhất bằng?

Nguồn: sytu.vn

Đọc Sách

Đề thi KSCĐ Toán 12 lần 1 năm 2019 - 2020 trường Ngô Gia Tự - Vĩnh Phúc
Ngày … tháng 11 năm 2019, trường THPT Ngô Gia Tự, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chuyên đề môn Toán dành cho học sinh khối 12 lần thứ nhất năm học 2019 – 2020, nhằm kiểm tra kiến thức Toán 12 định kỳ trong giai đoạn giữa học kỳ 1, đồng thời ôn luyện để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2020. Đề thi KSCĐ Toán 12 lần 1 năm 2019 – 2020 trường Ngô Gia Tự – Vĩnh Phúc có mã đề 137, đề có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi nhằm kiểm tra kiến thức Toán 11 và Toán 12 đã được học, đề thi có đáp án. Trích dẫn đề thi KSCĐ Toán 12 lần 1 năm 2019 – 2020 trường Ngô Gia Tự – Vĩnh Phúc : + Bạn An thả quả bóng từ độ cao 6m so với mặt đất xuống theo phương thẳng đứng sau đó bóng nảy lên rồi lại rơi xuống cứ như vậy cho đến khi bóng dừng lại trên mặt đất. Tính quãng đường mà bóng đã di chuyển biết rằng sau mỗi lần chạm đất bóng lại nảy lên đến độ cao bằng 3/4 độ cao của lần ngay trước đó. + Vòng loại World Cup 2022 khu vực Châu Á tại bảng G Việt Nam cùng bảng với các đội Thái Lan, Malaysia, Indonesia và UAE thi đấu theo thể thức mỗi đội gặp nhau hai lần. Hỏi kết thúc vòng đấu bảng ban tổ chức phải tổ chức bao nhiêu trận đấu ở bảng G? [ads] + Cho tứ diện đều ABCD có cạnh bằng 12. Gọi M, N, P lần lượt thỏa mãn các hệ thức vectơ MA + MB = 0, NB + NC = 0, PC + 2PD = 0. Mặt phẳng (MNP) chia tứ diện thành hai phần. Tính thể tích khối đa diện chứa đỉnh A. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, M nằm giữa A và O, mặt phẳng (α) qua M song song với SA và BD. Thiết diện của mặt phẳng (α) với hình chóp là: A. Một hình thang. B. Một hình bình hành. C. Một ngũ giác. D. Một tam giác. + Ba bạn Đoàn, Thanh, Niên mỗi bạn viết lên bảng một số tự nhiên nhỏ hơn 21. Tính xác suất để tổng ba số được viết lên bảng bằng 21.
Đề kiểm tra chất lượng Toán 12 lần 1 năm 2019 - 2020 trường Hàn Thuyên - Bắc Ninh
Ngày … tháng 10 năm 2019, trường THPT Hàn Thuyên, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra chất lượng môn Toán 12 lần thứ nhất giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề kiểm tra chất lượng Toán 12 lần 1 năm 2019 – 2020 trường Hàn Thuyên – Bắc Ninh mã đề 132, đề gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, để hoàn thành tốt bài thi, học sinh cần nắm vững các kiến thức Toán 12 vừa được học, đồng thời ôn tập lại những kiến thức Toán 10 và Toán 11 trọng tâm. Trích dẫn đề kiểm tra chất lượng Toán 12 lần 1 năm 2019 – 2020 trường Hàn Thuyên – Bắc Ninh : + Cho S là tập các số tự nhiên có 7 chữ số. Lấy ngẫu nhiên một số từ S. Tính xác suất để số lấy được có chữ số tận cùng bằng 3 và chia hết cho 7 (kết quả làm tròn đến hàng phần nghìn)? + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AD = DC = x, AB = 2x. Tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi G là trọng tâm của tam giác SAD. Tính khoảng cách d từ điểm G đến mặt phẳng (SBC). [ads] + Trong mặt phẳng tọa độ Oxy, cho điểm A(0;2) và (d) là đường thẳng đi qua O. Gọi H là hình chiếu vuông góc của A trên (d). Giả sử H(a;b) với a > 0. Biết khoảng cách từ điểm H đến trục hoành bằng độ dài AH. Tính T = a^2 – 4b. + Cho hình hộp chữ nhật có tổng độ dài tất cả các cạnh bằng 40, độ dài đường chéo bằng 5√2. Tìm thể tích lớn nhất Vmax của khối hộp chữ nhật đó. + Mã số điện thoại cố định của tỉnh Bắc Ninh là một kí tự gồm 10 chữ số trong đó 4 chữ số đầu là 0222. Hỏi có nhiều nhất bao nhiêu số điện thoại được tạo thành?
Đề khảo sát chất lượng Toán 12 lần 1 năm 2019 - 2020 trường Yên Lạc - Vĩnh Phúc
Nhằm đáp ứng yêu cầu kiểm tra đánh giá chất lượng học tập môn Toán 12 trong giai đoạn giữa học kỳ 1 và ôn thi THPT Quốc gia 2020 môn Toán, trường THPT Yên Lạc – Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng (KSCL) môn Toán 12 năm học 2019 – 2020 lần thứ nhất. Đề khảo sát chất lượng Toán 12 lần 1 năm học 2019 – 2020 trường THPT Yên Lạc – Vĩnh Phúc có mã đề 201, đề thi gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi kiểm tra tổng quát lại kiến thức Toán 12 đã học và ôn tập một số kiến thức Toán 11 trọng tâm. Trích dẫn đề khảo sát chất lượng Toán 12 lần 1 năm 2019 – 2020 trường Yên Lạc – Vĩnh Phúc : + Cho khối lập phương ABCD.A’B’C’D’ cạnh bằng 3. Gọi M, N lần lượt là trung điểm của đoạn thẳng A’D’ và C’D’. Mặt phẳng (BMN) chia khối lập phương thành hai phần, gọi V là thể tích phần chứa đỉnh B’. Tính V? [ads] + Cho hàm số y = (2x – 1)/(2x – 2) có đồ thị (C). Gọi M(a;b) với a > 1 là điểm thuộc (C). Biết tiếp tuyến của (C) tại M cắt tiệm cận đứng và tiệm cận ngang lần lượt tại A và B sao cho S_OIB = 8.S_OIA (trong đó O là gốc tọa độ và I là giao điểm hai tiệm cận). Tính giá trị của S = a + 4b. + Một nhóm trường THPT Yên Lạc, tỉnh Vĩnh Phúc gồm 3 học sinh lớp 10, 3 học sinh lớp 11 và 3 học sinh lớp 12 được xếp ngồi vào một hàng có 9 ghế, mỗi học sinh ngồi 1 ghế. Tính xác suất để 3 học sinh lớp 10 không ngồi 3 ghế liền nhau.