Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề bồi dưỡng HSG Toán 12 năm 2020 - 2021 trường THPT Liễn Sơn - Vĩnh Phúc

Đề bồi dưỡng HSG Toán 12 năm 2020 – 2021 trường THPT Liễn Sơn – Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian học sinh làm bài thi 180 phút, kỳ thi nhằm khảo sát chất lượng đội tuyển HSG Toán 12 của nhà trường, trước khi các em bước vào kỳ thi HSG Toán 12 cấp tỉnh. Trích dẫn đề bồi dưỡng HSG Toán 12 năm 2020 – 2021 trường THPT Liễn Sơn – Vĩnh Phúc : + Một tổ gồm 8 học sinh là An, Bảo, Chuyên, Dũng, Em, Fin, Giang, Hùng sẽ cùng đi trên một chuyến bay để dự đợt học tập và trải nghiệm. Đại lý dành cho tổ 8 vé máy bay có số ghế là 18A, 18B, 18C, 18D, 18E, 18F, 18G, 18H. Mỗi học sinh chọn ngẫu nhiên một vé. Tính xác suất để có đúng 4 học sinh trong. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = a và SA vuông góc với mặt đáy (ABCD). Biết M, N là hai điểm thay đổi lần lượt trên AB, AD sao cho AM + AN = a. Chứng minh thể tích khối chóp S.AMCN không đổi và tính khoảng cách từ điểm C đến mặt phẳng (SMN) theo a. + Một trang trại xây một bể chứa nước hình hộp chữ nhật không nắp có thể tích 18,432m3 (tính cả thành và đáy bể), biết đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng. Chi phí xây bể được tính theo tổng diện tích của thành (mặt bên ngoài) và đáy bể với giá 800 nghìn đồng trên 1m2. Tìm các kích thước của bể để chi phí xây bể là nhỏ nhất và tính gần đúng chi phí đó.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 12 năm 2020 - 2021 sở GDĐT tỉnh Đồng Nai
Thứ Sáu ngày 15 tháng 01 năm 2021, sở Giáo dục và Đào tạo tỉnh Đồng Nai tổ chức kỳ thi chọn học sinh và học viên giỏi môn Toán lớp 12 THPT và GDTX năm học 2020 – 2021. Đề thi học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT tỉnh Đồng Nai gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian cán bộ coi thi phát đề), thí sinh được phép sử dụng máy tính cầm tay nhưng không được phép sử dụng tài liệu khi làm bài. Trích dẫn đề thi học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT tỉnh Đồng Nai : + Một chiếc hộp đựng 20 viên bi giống nhau, mỗi viên bi được ghi một trong các số tự nhiên từ 1 đến 20 (không có hai viên bi ghi cùng một số). Bốc ngẫu nhiên 4 viên bi từ chiếc hộp nói trên, tính xác suất để tổng các số ghi trên các viên bi chia hết cho 3. + Bạn An làm hai cái bánh là hai khối trụ bằng nhau có tổng thể tích bằng 144pi cm3 và dùng giấy carton làm một cái hộp hình hộp chữ nhật (có đủ 6 mặt) để đựng vừa khít hai cái bánh như hình vẽ. Tính diện tích nhỏ nhất của giấy carton dùng trong việc nêu trên. + Cho hình chóp S.ABC có AB = AC = 10a, BC = 12a (với 0 < a thuộc R), hình chiếu vuông góc của đỉnh S lên mặt phẳng đáy trùng với tâm O của đường tròn ngoại tiếp tam giác ABC, góc giữa hai mặt phẳng (SBC) và (ABC) bằng 60°. 1) Tính theo a diện tích của mặt cầu ngoại tiếp hình chóp S.ABC. 2) Gọi hai điểm D, E lần lượt thuộc hai cạnh AB, BC thỏa mãn AD.BE = 60a2. Tính theo a thể tích của khối chóp S.ADE.
Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 - 2021 sở GDĐT Hưng Yên
Sáng thứ Ba ngày 12 tháng 01 năm 2021, sở Giáo dục và Đào tạo tỉnh Hưng Yên tổ chức kỳ thi chọn học sinh giỏi (HSG) môn Toán bậc THPT cấp tỉnh năm học 2020 – 2021. Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 – 2021 sở GD&ĐT Hưng Yên gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian cán bộ coi thi phát đề), học sinh không được sử dụng máy tính cầm tay khi làm bài. Trích dẫn đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2020 – 2021 sở GD&ĐT Hưng Yên : + Cho điểm A nằm trên mặt cầu (S) tâm O, bán kính R = 9 cm. Gọi I, K là hai điểm trên đoạn OA sao cho OI = IK = KA. Các mặt phẳng lần lượt đi qua I, K cùng vuông góc với OA và cắt mặt cầu (S) theo đường tròn (C1), (C2). Gọi V1 , V2 lần lượt là thể tích khối nón đỉnh O, đáy là đường tròn (C1), (C2). Tính tỉ số V1/V2. + Gọi S là tập các số tự nhiên có 4 chữ số đôi một khác nhau lập từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn chia hết cho 3. + Cho lăng trụ ABC.A’B’C’ có đáy là tam giác vuông tại A, AB = AC = a (a > 0), biết B’A = B’B = B’C; góc giữa hai mặt phẳng (BCC’B’) và (ABB’A’) bằng x với tan x = 5/2√2. Tính khoảng cách giữa hai đường thẳng A’C’ và B’C.
Đề thi HSG Toán 12 cấp tỉnh năm 2020 - 2021 sở GDĐT Thanh Hóa
Thứ Ba ngày 15 tháng 12 năm 2020, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi môn Toán 12 THPT cấp tỉnh năm học 2020 – 2021. Đề thi HSG Toán 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Thanh Hóa gồm 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG Toán 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Thanh Hóa : + Gọi X là tập hợp các số tự nhiên có 6 chữ số đôi một khác nhau lấy từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Chọn ngẫu nhiên một số từ tập X. Tính xác suất để số được chọn là số chẵn, có mặt hai chữ số 1 và 2, đồng thời 1 và 2 không đứng cạnh nhau. + Để đủ tiền mua nhà, anh An vay ngân hàng 500 triệu theo phương thức trả góp với lãi suất 0,85%/tháng. Sau mỗi tháng, kể từ thời điểm vay, anh An trả nợ cho ngân hàng số tiền cố định là 10 triệu đồng bao gồm cả tiền lãi vay và tiền gốc. Biết lãi suất không thay đổi trong suốt quá trình anh An trả nợ. Hỏi sau bao nhiêu tháng thì anh trả hết nợ ngân hàng? (tháng cuối có thể trả dưới 10 triệu đồng). + Cho mặt cầu tâm O, bán kính R = 1. Từ điểm S bất kỳ trên mặt cầu kẻ ba đường thẳng cắt mặt cầu tại các điểm A, B, C (khác với S) sao cho SA = SB = SC và ASB = BSC = CSA = a. Khi a thay đổi, tính thể tích lớn nhất của khối chóp S.ABC.
Đề thi chọn học sinh giỏi Quốc gia môn Toán năm học 2020 - 2021
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Quốc gia môn Toán năm học 2020 – 2021; đề thi gồm có 02 bài thi, bài thi thứ nhất gồm 04 bài toán tự luận, thời gian làm bài 180 phút, bài thi thứ hai gồm 03 bài toán tự luận, thời gian làm bài 180 phút; kỳ thi được diễn ra trong hai ngày: Ngày 1: 25/12/2020 và Ngày 2: 26/12/2020. Trích dẫn đề thi chọn học sinh giỏi Quốc gia môn Toán năm học 2020 – 2021 : + Một học sinh chia tất cả 30 viên bi vào 5 cái hộp được đánh số 1, 2, 3, 4, 5 (sau khi chia có thể có hộp không có viên bi nào). a) Hỏi có bao nhiêu cách chia các viên bi vào các hộp (hai cách chia là khác nhau nếu có một hộp có số bi trong hai cách chia là khác nhau)? b) Sau khi chia, học sinh này sơn 30 viên bi đó bởi một số màu (mỗi viên được sơn đúng một màu, một màu có thể sơn cho nhiều viên bi), sao cho không có 2 viên bi nào trong cùng một hộp có màu giống nhau và từ 2 hộp bất kì không thể chọn ra được 8 viên bi được sơn bởi 4 màu. Chứng minh rằng với mọi cách chia, học sinh đều phải dùng không ít hơn 10 màu để sơn bi. c) Hãy chỉ ra một cách chia sao cho với đúng 10 màu học sinh có thể sơn bi thỏa mãn các điều kiện ở câu b. + Cho tam giác nhọn không cân ABC có trực tâm H và D, E, F lần lượt là chân đường cao hạ từ các đỉnh A, B, C. Gọi (1) là đường tròn ngoại tiếp tam giác HEF với tâm I và K, J lần lượt là trung điểm BC, EF. Cho HJ cắt lại (I) tại G, GK cắt lại (I) tại L. a) Chứng minh rằng AD vuông góc với EF. b) Cho AD cắt EF tại M, IM cắt lại đường tròn ngoại tiếp tam giác IEF tại N, DN cắt AB, AC lần lượt tại P, Q. Chứng minh rằng PE, QF, AK đồng quy.