Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 - 2024 sở GDĐT Lâm Đồng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Lâm Đồng; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 – 2024 sở GD&ĐT Lâm Đồng : + Trong khuôn viên sân trường có khu đất hình chữ nhật với các kích thước là 16 mét và 18 mét. Nhà trường làm hai bồn hoa hình tròn, phần còn lại của khu đất đó nhà trường giao cho lớp 9A trồng cỏ (Minh họa hình bên). Tính diện tích phần trồng cỏ (lấy pi = 3,14). + Vào dịp họp mặt gia đình đầu năm Giáp Thìn 2024, bạn An hỏi mẹ về tuổi của bác Hai và chú Sáu thì được mẹ trả lời: “Lúc tuổi của bác Hai bằng tuổi chú Sáu hiện nay thì tuổi của bác Hai gấp ba lần tuổi của chú Sáu; lúc tuổi chú Sáu bằng tuổi bác Hai hiện nay thì tổng số tuổi của hai người đó là 98”. Em hãy giúp bạn An tính tuổi của bác Hai và chú Sáu hiện nay. + Số học sinh đạt “Học sinh giỏi cấp tỉnh” của thành phố X năm học 2023 – 2024 là một số tự nhiên có hai chữ số lớn hơn 50. Biết rằng tích hai chữ số lớn hơn tổng hai chữ số của số đó là 5 và chữ số hàng chục lớn hơn chữ số hàng đơn vị. Hỏi năm học 2023 – 2024, thành phố X có bao nhiêu học sinh đạt “Học sinh giỏi cấp tỉnh”.

Nguồn: toanmath.com

Đọc Sách

Đề Olympic chuyên Toán THCS lần 1 năm 2023 - 2024 trường chuyên Hạ Long Quảng Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi Olympic chuyên môn Toán dành cho học sinh THCS lần thứ nhất năm học 2023 – 2024 trường THPT chuyên Hạ Long, tỉnh Quảng Ninh; kỳ thi được diễn ra vào ngày 31 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề Olympic chuyên Toán THCS lần 1 năm 2023 – 2024 trường chuyên Hạ Long – Quảng Ninh : + Cho một mạng lưới các ô vuông kích thước 5 5 trong đó có khuyết một hình vuông kích thước 2 2 như hình vẽ. Một người đứng ở điểm A cần di chuyển đến điểm B, biết mỗi bước đi chỉ có thể đi lên trên hoặc sang phải theo đỉnh mỗi ô vuông kích thước 1 1. Hỏi có bao nhiêu cách để người đó có thể di chuyển từ A đến B. + Cho tam giác ABC không cân có đường tròn nội tiếp I tiếp xúc với các cạnh BC CA AB lần lượt tại D E F. Điểm K là hình chiếu vuông góc của D trên đường thẳng EF đường thẳng qua K vuông góc với IK cắt các đường thẳng CA BA lần lượt tại V U. a) Chứng minh rằng tứ giác AVIU nội tiếp và UF VE. b) Chứng minh rằng KF DB KE DC. c) Gọi E’ là tiếp điểm của đường tròn bàng tiếp góc B của tam giác ABC với AC F là tiếp điểm của đường tròn bàng tiếp góc C của tam giác ABC với AB. Chứng minh các điểm E F U V cùng thuộc một đường tròn. + Chứng minh rằng với mọi số nguyên dương m số 4(8 7) m không thể viết được dưới dạng tổng của ba số chính phương (số chính phương là bình phương của một số nguyên).
Đề khảo sát HSG Toán 9 lần 3 năm 2023 - 2024 phòng GDĐT Tam Kỳ - Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát học sinh giỏi môn Toán 9 lần 3 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Tam Kỳ, tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2024.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Hà Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hà Giang; kỳ thi được diễn ra vào ngày 29 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Hà Giang : + Cho a, b, c là các số nguyên, đôi một nguyên tố cùng nhau thỏa mãn (a – c)(b – c) = c2. Chứng minh tích abc là số chính phương. + Cho a, b là các số thực không âm thỏa mãn điều kiện a + b = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = (a4 + 1)(b4 + 1) – 4ab. + Cho tam giác ABC không cân (AB < AC), nội tiếp đường tròn tâm O. Gọi AD (D thuộc BC) là đường cao của tam giác ABC, AM là đường kính của đường tròn tâm O, K là hình chiếu của B lên AM. a) Chứng minh ABDK là tứ giác nội tiếp và DK vuông góc với AC. b) Gọi E, F lần lượt là trung điểm của đoạn thẳng BD, CM. Chứng minh AEF = 90°.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 - 2024 sở GDĐT Long An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán 9 THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Long An; kỳ thi được diễn ra vào ngày 31 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 – 2024 sở GD&ĐT Long An : + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O;R). Ba đường cao AD, BE và CF của tam giác ABC đồng quy tại H (các điểm D, E và F lần lượt thuộc các cạnh BC, AC và AB). Các đường thẳng AD, BE và CF lần lượt cắt đường tròn (O) tại K, M và N (các điểm K, M và N lần lượt không trùng với các điểm A, B và C). a) Chứng minh H là tâm đường tròn nội tiếp tam giác DEF. b) MK cắt AC tại P, NK cắt AB tại Q. Chứng minh ba điểm Q, H, P thẳng hàng. c) Tính giá trị của biểu thức T. + Cho tam giác ABC vuông tại A. Đường tròn nội tiếp tam giác ABC có bán kính bằng r và BC = a. Chứng minh. + Cho a, b, c là các số thực dương thỏa mãn a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức P.