Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số chuyên đề toán tổ hợp bồi dưỡng học sinh giỏi THPT - Phạm Minh Phương

Cuốn sách gồm 180 trang, được biên soạn bởi tác giả Phạm Minh Phương (chủ biên), tuyển tập một số chuyên đề toán tổ hợp bồi dưỡng học sinh giỏi khối Trung học Phổ thông. CHUYÊN ĐỀ 1 . TẬP HỢP. 1.1 Các khái niệm cơ bản. 1.1.1 Khái niệm tập hợp. 1.1.2 Các cách xác định tập hợp. 1.1.3 Tập con. 1.1.4 Tập hợp bằng nhau. 1.1.5 Giao của hai tập hợp. 1.1.6 Hợp của hai tập hợp. 1.1.7 Hiệu của hai tập hợp. 1.1.8 Phần bù của hai tập hợp. 1.1.9 Tích Đề-các. 1.1.10 Một số tính chất. 1.2 Bài tập. 1.2.1 Bài tập luyện tập. 1.2.2 Bài tập tự giải. 1.3 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 2 . PHÉP ĐẾM. 2.1 Các nguyên lí cơ bản. 2.2 Tổ hợp – chỉnh hợp – hoán vị. 2.3 Bài tập. 2.3.1 Bài tập luyện tập. 2.3.2 Bài tập tự giải. 2.4 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 3 . NHỊ THỨC NEWTON. 3.1 Bài tập. 3.1.1 Bài tập luyện tập. 3.1.2 Bài tập tự giải. 3.2 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 4 . NGUYÊN TẮC DIRICHLET. 4.1 Nội dung nguyên tắc Dirichlet. 4.2 Bài tập. 4.2.1 Bài tập luyện tập. 4.2.2 Bài tập tự giải. 4.3 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 5 . NGUYÊN TẮC CỰC HẠN. 5.1 Nguyên tắc cực hạn. 5.2 Bài tập. 5.2.1 Bài tập luyện tập. 5.2.2 Bài tập tự giải. 5.3 Hướng dẫn giải bài tập [ads] CHUYÊN ĐỀ 6 . BẤT BIẾN. 6.1 Thuật toán. 6.1.1 Định nghĩa thuật toán. 6.1.2 Các bài toán về thuật toán. 6.1.3 Hàm bất biến. 6.2 Bài tập. 6.2.1 Bài tập luyện tập. 6.2.2 Bài tập tự giải. 6.3 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 7 . ĐƠN BIẾN VÀ BÀI TOÁN HỘI TỤ. 7.1 Hàm đơn biến. 7.2 Bài toán hội tụ và bài toán phân kì. 7.3 Bài tập. 7.3.1 Bài tập luyện tập. 7.3.2 Bài tập tự giải. 7.4 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 8 . MỘT SỐ PHƯƠNG PHÁP ĐẾM NÂNG CAO. 8.1 Phương pháp truy hồi. 8.2 Phương pháp sử dụng song ánh. 8.3 Phương pháp quỹ đạo. 8.4 Phương pháp sử dụng đa thức và số phức. 8.5 Bài tập. 8.5.1 Bài tập luyện tập. 8.5.2 Bài tập tự giải. 8.6 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 9 . HÀM SINH VÀ TỔ HỢP. 9.1 Khái niệm hàm sinh. 9.2 Khai triển Taylor. 9.3 Hệ số nhị thức mở rộng. 9.4 Ứng dụng của hàm sinh. 9.5 Bài tập. 9.5.1 Bài tập luyện tập. 9.5.2 Bài tập tự giải. 9.6 Hướng dẫn giải bài tập. CHUYÊN ĐỀ 10 . HÌNH LỒI VÀ ĐỊNH LÍ HELLY. 10.1 Hình lồi. 10.2 Định lí Helly. 10.3 Bài tập. 10.3.1 Bài tập luyện tập. 10.3.2 Bài tập tự giải. 10.4 Hướng dẫn giải bài tập. Bài tập tổng hợp. Tài liệu tham khảo.

Nguồn: toanmath.com

Đọc Sách

Thủ thuật casio tìm hệ số trong khai triển nhị thức Newton - Bùi Thế Việt
Như chúng ta đã biết, kể từ kỳ thi THPT Quốc Gia năm 2017, môn Toán được thi dưới hình thức khác là trắc nghiệm. Với 50 câu hỏi trong 180 phút cùng hàng chục nghìn câu hỏi trắc nghiệm lấy từ ngân hàng đề thi của bộ GD&ĐT, chúng ta khó có thể lường trước được những gì sẽ xảy ra trong kỳ thi sắp tới. Trong các công cụ được mang vào phòng thi thì CASIO hoặc các máy tính cầm tay khác là thiết bị không thể thiếu trong mỗi kỳ thi. Để đạt hiệu quả cao nhất thì chúng ta cần phải biết cách sử dụng các tính năng của CASIO một cách tối đa. [ads] Trong chuyên đề này, chúng ta sẽ sử dụng CASIO trong việc giải nhanh các bài toán liên quan tới việc yêu cầu tìm hệ số trong khai triển nhị thức Newton. Lưu ý: Thủ thuật chỉ phù hợp với hình thức thi trắc nghiệm.
Câu tổ hợp - xác suất cần học những gì - Lê Minh Cường
Dưới đây là các nhận xét chủ quan của tôi về các câu tổ hợp – xác suất trong đề thi những năm gần đây. Học sinh cần ôn kỹ kiến thức về các quy tắc đếm, các định nghĩa về tổ hợp – chính hợp – hoán vị; tính xác suất của biến cố đối. Về điểm thì những năm gần hơn số điểm đã giảm dần, tăng tính ứng dụng của xác suất trong thực tế. Về mức độ khó và phức tạp ở mức tăng nhẹ so với từng năm, yêu cầu học sinh cần tư duy cao, pháp hiện phương pháp phù hợp để xác định số phần tử không gian mẫu và biến cố. Ngoài ra còn các phương trình về các đại lượng tổ hợp, tìm hệ số, số hạng của nhị thức Newton học sinh cũng cần lưu ý. Tài liệu này được chia là hai phần chính: [ads] + Phần A: BÀN VỀ CÂU TỔ HỢP XÁC SUẤT TRONG CÁC ĐỀ THI + Phần B: NHỮNG VẤN ĐỀ LIÊN QUAN ĐẾN TỔ HỢP XÁC SUẤT * Bài 1: QUI TẮC CỘNG, QUI TẮC NHÂN * Bài 2: HOÁN VỊ, CHỈNH HỢP VÀ TỔ HỢP * Bài 3: NHỊ THỨC NEWTON * Bài 4: ÔN TẬP PHẦN TỔ HỢP * Bài 5: BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ Phần A là để học sinh định hình được những gì cần ôn lại cho câu Tổ hợp xác suất trong các đề thi gần nhất. Giúp học sinh hình dung tổng quát nhất về kỳ thi, ôn tập một cách hiệu quả. Phần B chỉ đóng vai trò tham khảo cho sự ôn tập của học sinh. Hãy chọn những phần trọng tâm nhất, những phần mà các bạn còn nắm chưa vững để đọc và nghiên cứu bài tập.
Một số bài toán về quy tắc đếm - Nguyễn Tiến Chinh
Tài liệu một số bài toán về quy tắc đếm của thầy giáo Nguyễn Tiến Chinh gồm 22 trang với các bài toán điển hình, có lời giải chi tiết.
Tính giá trị và chứng minh các biểu thức tổ hợp - Mai Ngọc Thắng
Chứng minh đẳng thức và tính giá trị biểu thức trong giải tích tổ hợp là một vấn đề khá rộng, nó có mặt trong những bài thi THPT và cả trong các đề thi HSG Quốc gia. Với mong muốn giúp các bạn có thêm tư liệu cho việc tự học, đây là những kiến thức tôi có được trong quá trình luyện thi với người thầy kính yêu Vũ Vĩnh Thái và thêm một ít tôi sưu tầm được, tôi xin tổng hợp lại thành một chuyên đề nho nhỏ cũng nhằm thêm mục đích là lưu trữ. Trong chuyên đề này hầu hết là liên quan đến tổ hợp nên các bạn cần nắm vững và sử dụng thuần thục 3 công thức liên quan đến tổ hợp như trên và trong từng mục tôi sẽ nhắc lại công thức áp dụng trong các bài tập thuộc mục đó. [ads] Các bài tập tôi nêu ra đều minh họa khá rõ cho phương pháp và sẽ có một số bài tập để các bạn có thể rèn luyện lại. Tôi sẽ cố gắng phân tích hướng giải ở một số bài toán với mong muốn giúp các bạn hiểu sâu sắc hơn về lời giải của bài toán đó.