Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic Toán 10 năm 2023 - 2024 cụm Hoàn Kiếm Hai Bà Trưng - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi Olympic môn Toán 10 năm học 2023 – 2024 cụm trường THPT Hoàn Kiếm & Hai Bà Trưng, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 10 năm 2023 – 2024 cụm Hoàn Kiếm & Hai Bà Trưng – Hà Nội : + Một công ty TNHH trong một đợt quảng cáo và bán khuyến mãi hàng hóa (1 sản phẩm mới của công ty) cần thuê xe để chở 140 người và 9 tấn hàng. Nơi thuê chỉ có hai loại xe A và B, trong đó xe loại A có 10 chiếc, xe loại B có 9 chiếc. Một chiếc xe loại A được cho thuê với giá 4 triệu, loại B giá 3 triệu. Hỏi công ty phải thuê bao nhiêu xe mỗi loại để chi phí vận chuyển là thấp nhất, biết rằng xe A chỉ chở được tối đa 20 người và 0,6 tấn hàng, xe B chở được tối đa 10 người và 1,5 tấn hàng. + Cho tam giác ABC có BC a CA b AB c. Ký hiệu a h là độ dài đường cao xuất phát từ đỉnh A và p là nửa chu vi của tam giác ABC. 1) Chứng minh 2 2 b c a b C c B cos cos. 2) Chứng minh tam giác ABC cân nếu thỏa mãn điều kiện. + Trong mặt phẳng tọa độ Oxy cho ABC biết B2 1 đường thẳng chứa đường cao và đường phân giác trong qua hai đỉnh A C có phương trình lần lượt là 3 4 27 0 x y và x y 2 5 0. 1) Viết phương trình tổng quát của đường thẳng BC và tìm tọa độ điểm C. 2) Viết phương trình tổng quát của đường thẳng AB.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi tỉnh môn Toán 10 năm học 2016 - 2017 sở GD và ĐT Hà Tĩnh
Đề thi chọn học sinh giỏi tỉnh môn Toán 10 năm học 2016 – 2017 sở GD và ĐT Hà Tĩnh gồm 5 bài toán tự luận, có hướng dẫn giải và thang điểm. Trích một số bài toán trong đề: + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD. Gọi M là trung điểm của đoạn thẳng BC và N là điểm thuộc đoạn thẳng AC sao cho AC = 4AN. Đường thẳng DM có phương trình y – 1 = 0 và N(1/2;-3/2). Xác định tọa độ điểm A. + Tập hợp X có 2^n phần tử được chia thành các tập con đôi một không giao nhau. Xét quy tắc chuyển phần tử giữa các tập như sau: nếu A, B là các tập con của X và số phần tử của A không nhỏ hơn số phần tử của B thì ta được phép chuyển từ tập A vào tập B số phần tử bằng số phần tử của tập B. Chứng minh rằng sau một số hữu hạn các bước chuyển theo quy tắc trên, ta nhận được tập X.
Đề thi chọn học sinh giỏi tỉnh môn Toán 10 năm học 2016 - 2017 sở GD và ĐT Hải Dương
Đề thi chọn học sinh giỏi tỉnh môn Toán 10 năm học 2016 – 2017 sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có hướng dẫn giải và thang điểm. Trích một số bài toán trong đề: + Một nông trại dự định trồng cà rốt và khoai tây trên khu đất có diện tích 5 ha. Để chăm bón ác loại cây này, nông trại phải dùng phân vi sinh. Nếu trồng cà rốt trên 1 ha cần dùng 3 tấn phân vi sinh và thu được 50 triệu đồng tiền lãi. Nếu trồng khoai tây trên 1 ha cần dùng 5 tấn phân vi sinh và thu được 75 triệu đồng tiền lãi. Hỏi nông trại cần trồng mỗi loại cây trên diện tích là bao nhiêu để thu được tổng số tiền lãi cao nhất? Biết rằng số phân vi sinh cần dùng không được vượt quá 18 tấn. + Cho hình bình hành ABCD. Gọi M là trung điểm cạnh CD; N là điểm thuộc cạnh AD sao cho AN = 1/3AD. Gọi G là trọng tâm tam giác BMN, đường thẳng AG cắt BC tại K. Tính tỉ số BK/BC.
Đề thi học sinh giỏi Toán 10 cấp tỉnh năm 2016 - 2017 sở GDĐT Lai Châu
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán 10 cấp tỉnh năm học 2016 – 2017 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 10 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu : + Với giá trị nào của m thì đồ thị hàm số 2 y mx m x m 3 6 cắt trục hoành tại 2 điểm phân biệt có hoành độ 1 x và 2 x thỏa mãn điều kiện 1 2 x x 2 1. + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có điểm A 1 3 đường phân giác trong góc A có phương trình xy20 tâm đường tròn ngoại tiếp tam giác ABC là I 3 6. Viết phương trình đường thẳng BC, biết diện tích tam giác ABC gấp 4 lần diện tích tam giác IBC. + Cho tam giác ABC nhọn, không cân nội tiếp đường tròn (O) có đường cao AH H BC và tâm đường tròn nội tiếp là I. Gọi M là điểm chính giữa cung nhỏ BC của (O) và D là điểm đối xứng với A qua O. Đường thẳng MD cắt các đường thẳng BC, AH theo thứ tự tại P và Q. Chứng minh rằng tam giác IPQ vuông.