Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phát triển đề tham khảo tốt nghiệp THPT 2021 môn Toán - Lê Văn Đoàn

Tài liệu gồm 146 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, phát triển đề tham khảo tốt nghiệp THPT 2021 môn Toán, với những câu hỏi và bài tập trắc nghiệm tương tự, có đáp án; tài liệu giúp học sinh lớp 12 rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2020 – 2021 do Bộ Giáo dục và Đào tạo tổ chức. 50 dạng toán đề minh họa TN THPT 2021 môn Toán: 1. Hoán vị – Chỉnh hợp – Tổ hợp: Cách chọn người / vật đơn giản. 2. Cấp số cộng: Cho trước u1 và ui. 3. Đơn điệu hàm số: Biết bảng biến thiên. 4. Cực trị hàm số: Biết bảng biến thiên. 5. Cực trị hàm số: Biết bảng xét dấu f'(x). 6. Tiệm cận đồ thị hàm số. Tìm TCĐ – TCN khi biết trước ĐTHS tường minh. 7. Khảo sát đồ thị: Tìm hàm số khi biết đồ thị. 8. Tương giao hàm số: Đồ thị cắt trục tung – trục hoành. 9. Logarit: Rút gọn biểu thức logarit đơn giản. 10. Đạo hàm hàm số mũ: Hàm y = a^x. 11. Lũy thừa: Rút gọn lũy thừa đơn giản. 12. Phương trình mũ: Phương trình a^f(x) = b. 13. Phương trình logarit: Phương trình log a (kx + q) = b. 14. Nguyên hàm đa thức: Đa thức bậc 2 – 3 – 4. 15. Nguyên hàm lượng giác: Lượng giác: f(x) = cos(u(x)). 16. Tích phân: Tính tích phân dựa vào tính chất. 17. Tích phân: Đa thức. 18. Số phức: Tìm số phức liên hợp. 19. Số phức: Các phép toán cộng – trừ. 20. Số phức: Tìm điểm biểu diễn của số phức cho trước. 21. Khối đa diện: Tính V biết trước chiều cao – diện tích đáy. 22. Khối đa diện: Tính V biết các kích thước khối hộp. 23. Khối tròn xoay: Xác định công thức tính V. 24. Khối tròn xoay: Tính diện tích xung quanh biết r và l. 25. Hệ Oxyz: Tìm tọa độ trung điểm. 26. Hệ Oxyz: Tìm tâm – bán kính mặt cầu. 27. Phương trình mặt phẳng: Tìm mặt phẳng đi qua điêm cho trước. 28. Phương trình đường thẳng: Tìm VTCP đường thẳng đi qua hai điểm cho trước. 29. Xác suất: Tính xác suất chọn được số chẵn – lẻ. 30. Đơn điệu hàm số: Tìm HS đơn điệu trên R. 31. GTLN – GTNN: Tìm max – min trên đoạn. 32. BPT mũ: Giải BPT mũ. 33. Tích phân: Tính tích phân dựa vào tính chất. 34. Số phức: Tính module của tích hai số phức. 35. Góc giữa đường – mặt: Tính góc giữa đường và mặt trong hình hộp. 36. Khoảng cách từ điểm – mặt: Tính khoảng cách từ đỉnh đến mặt đáy của chóp đều. 37. Phương trình mặt cầu: Viết PTMC có tâm và đi qua điểm cho trước. 38. Phương trình đường thẳng: Viết PTĐT đi qua hai điểm cho trước. 39. GTLN – GTNN: Tìm max – min hàm hợp trên đoạn. 40. Bất phương trình mũ: Tìm cặp nghiệm nguyên thỏa BPT. 41. Tích phân: Tính TP hàm ẩn. 42. Số phức: Tìm số phức thỏa nhiều điều kiện cho trước. 43. Khối đa diện: Tính V biết chiều cao khối đa diện và góc giữa mặt bên và mặt đáy. 44. Khối đa diện: Bài toán thực tế. 45. Phương trình đường thẳng: Viết PTĐT thỏa nhiều điều kiện với MP, đường thẳng khác. 46. Cực trị: Tìm cực trị hàm hợp khi biết bảng xét dấu. 47. Phương trình logarit – mũ: Tìm tham số để biến số phụ thuộc vào biểu thức cho trước. 48. Ứng dụng tích phân: Tìm tỉ số diện tích, biết đồ thị hàm số. 49. Số phức: Cực trị số phức. 50. Phương trình mặt phẳng: Tìm hệ số PTMP thỏa mãn các điều kiện cho trước (lồng ghép với khối tròn xoay).

Nguồn: toanmath.com

Đọc Sách

Các phương pháp tìm nhanh đáp án bài tập trắc nghiệm môn Toán kỳ thi THPT Lê Hồng Đức
Nội dung Các phương pháp tìm nhanh đáp án bài tập trắc nghiệm môn Toán kỳ thi THPT Lê Hồng Đức Bản PDF - Nội dung bài viết Các Phương Pháp Tìm Nhanh Đáp Án Bài Tập Trắc Nghiệm Môn Toán Kỳ Thi THPT Lê Hồng Đức Các Phương Pháp Tìm Nhanh Đáp Án Bài Tập Trắc Nghiệm Môn Toán Kỳ Thi THPT Lê Hồng Đức Sách "Các Phương Pháp Tìm Nhanh Đáp Án Bài Tập Trắc Nghiệm Môn Toán Kỳ Thi THPT" là tác phẩm do các tác giả Lê Hồng Đức (Chủ biên), Đỗ Hoàng Hà, Lê Hoàng Nam, Đoàn Minh Châu, Đào Thị Ngọc Hà biên soạn, với tổng cộng 324 trang. Nội dung sách bao gồm các phần chính như lời giải tự luận, lời giải tự luận kết hợp sử dụng máy tính Casio fx - 570MS, lựa chọn đáp án bằng phép thử, lựa chọn đáp án bằng phép thử kết hợp sử dụng máy tính Casio fx - 570MS, và lựa chọn đáp án bằng phép đánh giá. Sách cung cấp cho người đọc các phương pháp giúp tìm nhanh đáp án cho bài tập trắc nghiệm môn Toán kỳ thi THPT, giúp họ nắm vững kiến thức và chuẩn bị tốt cho kỳ thi sắp tới.
Kỹ năng làm bài trắc nghiệm môn Toán Đoàn Công Chung
Nội dung Kỹ năng làm bài trắc nghiệm môn Toán Đoàn Công Chung Bản PDF - Nội dung bài viết Sách Kỹ năng làm bài trắc nghiệm môn Toán Đoàn Công Chung Sách Kỹ năng làm bài trắc nghiệm môn Toán Đoàn Công Chung Sách Kỹ năng làm bài trắc nghiệm môn Toán được biên soạn bởi Đoàn Công Chung và Nguyễn Ngọc Nam với tổng cộng 414 trang. Trong sách, bạn sẽ tìm thấy các phần sau: 12 đề thi minh họa kỳ thi THPT Quốc gia 2017, giúp bạn ôn luyện hiệu quả cho kỳ thi quan trọng. 4 chuyên đề Toán ứng dụng thực tế giúp bạn rèn luyện kỹ năng và chinh phục điểm 10. Bài tập phong phú với lời giải chi tiết, giúp bạn hiểu rõ từng bước giải và ôn tập một cách dễ dàng. Sách không chỉ giúp bạn nắm vững kiến thức môn Toán mà còn giúp bạn phát triển kỹ năng làm bài trắc nghiệm một cách thành thạo. Đây chắc chắn sẽ là nguồn tư liệu hữu ích đối với những ai đang chuẩn bị cho kỳ thi quan trọng.
Cẩm nang luyện thi THPT Quốc gia 2017 môn Toán Hứa Lâm Phong
Nội dung Cẩm nang luyện thi THPT Quốc gia 2017 môn Toán Hứa Lâm Phong Bản PDF - Nội dung bài viết Cẩm nang luyện thi THPT Quốc gia 2017 môn Toán Cẩm nang luyện thi THPT Quốc gia 2017 môn Toán Sách Cẩm nang luyện thi THPT Quốc gia 2017 môn Toán là tác phẩm của các tác giả Hứa Lâm Phong, Đinh Xuân Nhân, Ninh Công Tuấn, Phạm Việt Duy Kha, Trần Hoàng Đăng, Lê Minh Cường. Sách gồm tổng cộng 414 trang, chia thành 4 chuyên đề về Giải tích và 3 chuyên đề về Hình học. Trong phần Giải tích, sách bao gồm các chuyên đề sau: 1. Khảo sát hàm số 2. Lũy thừa – Mũ – Logarit 3. Nguyên hàm – Tích phân – Ứng dụng 4. Số phức Trong phần Hình học, sách bao gồm các chuyên đề sau: 5. Khối đa diện 6. Khối tròn xoay 7. Hình học Oxyz Đây là tài liệu hữu ích để học sinh tự ôn tập và luyện thi môn Toán trong kỳ thi THPT Quốc gia. Sách cung cấp kiến thức bám sát chương trình, giúp học sinh nắm vững kiến thức cơ bản và phát triển kỹ năng giải bài tập đồng thời chuẩn bị tốt cho kỳ thi quan trọng.