Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra KSCĐ lần 1 lớp 11 môn Toán năm 2023 2024 trường THPT Xuân Hòa Vĩnh Phúc

Nội dung Đề kiểm tra KSCĐ lần 1 lớp 11 môn Toán năm 2023 2024 trường THPT Xuân Hòa Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra khảo sát chuyên đề lần 1 môn Toán lớp 11 năm học 2023 – 2024 trường THPT Xuân Hòa, tỉnh Vĩnh Phúc; đề thi mã đề 076, gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, có đáp án. Trích dẫn Đề kiểm tra KSCĐ lần 1 Toán lớp 11 năm 2023 – 2024 trường THPT Xuân Hòa – Vĩnh Phúc : + Tìm hiểu tiền công khoan giếng ở hai cơ sở khoan giếng, người ta được biết: – Ở cơ sở A: Giá của mét khoan đầu tiên là 50.000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 10000 đồng so với giá của mét khoan ngay trước. – Ở cơ sở B: Giá của mét khoan đầu tiên là 50.000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 8% giá của mét khoan ngay trước. Một người muốn chọn một trong hai cơ sở nói trên để thuê khoan một cái giếng sâu 20 mét, một cái giếng sâu 30 mét ở hai địa điểm khác nhau. Hỏi người ấy nên chọn cơ sở khoan giếng nào cho từng giếng để chi phí khoan hai giếng là ít nhất. Biết chất lượng và thời gian khoan giếng của hai cơ sở là như nhau. A. Chọn cở sở A khoan giếng 30 mét, chọn cơ sở B khoan giếng 20 mét. B. Chọn cở sở A khoan giếng 20 mét, chọn cơ sở B khoan giếng 30 mét. C. Chọn cơ sở A để khoan cả hai giếng. D. Chọn cơ sở B để khoan cả hai giếng. + Cho cấp số cộng (un) có: 1 u d 1 1. Khẳng định nào sau đây là đúng? A. Cấp số cộng này không có hai số 0,5 và 0,6. B. Số hạng thứ 4 của cấp số cộng này là: 3,9. C. Số hạng thứ 7 của cấp số cộng này là: 0,6. D. Số hạng thứ 6 của cấp số cộng này là: 0,5. + Xét tính tăng, giảm và bị chặn của dãy số n u biết: 2 13 3 2 n n u n A. Dãy số không tăng không giảm, không bị chặn B. Dãy số tăng, bị chặn C. Dãy số giảm, bị chặn D. Cả A, B, C đều sai. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 11 năm 2019 - 2020 trường chuyên Lê Quý Đôn - BR VT
Thứ Bảy ngày 13 tháng 06 năm 2020, trường THPT chuyên Lê Quý Đôn, tỉnh Bà Rịa – Vũng Tàu tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán lớp 11 năm học 2019 – 2020. Đề thi chọn HSG Toán 11 năm 2019 – 2020 trường THPT chuyên Lê Quý Đôn – BR VT gồm 01 trang với 05 bài toán dạng tự luận, học sinh làm bài trong khoảng thời gian 180 phút. Trích dẫn đề thi chọn HSG Toán 11 năm 2019 – 2020 trường chuyên Lê Quý Đôn – BR VT : + Cho tam giác ABC đều, tâm H và có độ dài cạnh là a. Đường thẳng d vuông góc với mặt phẳng (ABC) tại điểm A. Điểm M thay đổi trên đường thẳng d, AM = x (x > 0). Gọi K là trực tâm tam giác MBC. Chứng minh đường thẳng HK vuông góc với mặt phẳng (MBC) và tìm x để khoảng cách từ điểm K đến mặt phẳng (ABC) đạt giá trị lớn nhất. [ads] + Xét hình chóp S.ABC thay đổi sao cho các cạnh SA, SB, SC đôi một vuông góc với nhau. Gọi M, N, P là trung điểm các cạnh BC, CA, AB. Kí hiệu α, β, γ lần lượt là góc tạo bởi mặt phẳng (ABC) với các mặt phẳng (SMN), (SNP), (SPM). Tìm giá trị lớn nhất của biểu thức T = sinα + sinβ + sinγ. + Có một số kiện hàng đã được đóng gói với tổng khối lượng là 3 tấn. Mỗi kiện hàng có khối lượng không quá 500 kilôgam. Chứng minh rằng người ta có thể sử dụng 4 chiếc xe tải, mỗi xe chở không quá 1 tấn để chở tất cả các kiện hàng nói trên.
Đề thi chọn học sinh giỏi Toán 11 năm 2019 - 2020 sở GDĐT Thái Nguyên
Thứ Sáu ngày 29 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Thái Nguyên tổ chức kỳ thi chọn học sinh giỏi (HSG) cấp tỉnh môn Toán 11 năm học 2019 – 2020. Đề thi chọn học sinh giỏi Toán 11 năm 2019 – 2020 sở GD&ĐT Thái Nguyên gồm 01 trang với 06 bài toán tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi chọn học sinh giỏi Toán 11 năm 2019 – 2020 sở GD&ĐT Thái Nguyên : + Cho tam giác ABC có ba góc nhọn (AB < BC < AC) nội tiếp đường tròn (O;R). Vẽ đường tròn tâm O’ lần lượt tiếp xúc với các cạnh BC, AC tại D, E và tiếp xúc trong với đường tròn (O;R) tại T. Đường thẳng TD cắt đường tròn (O;R) tại K (K khác T). Gọi I là tâm đường tròn nội tiếp tam giác ABC. Chứng minh KC = KB và ba điểm D, I, E thẳng hàng. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA vuông góc với mặt phẳng đáy và SA = 2a. Mặt phẳng (P) chứa BC và cắt các cạnh SA, SD lần lượt tại M, N. Góc giữa đường thẳng AC và (P) bằng 30 độ. Tính diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD. + Cho tập hợp X = {1;2;3;4;…;3^n}. Chứng minh rằng, với mọi số tự nhiên n ≥ 2 luôn tồn tại tập con M của tập hợp X sao cho tập con M có 2n phần tử và không có ba phần tử nào lập thành một cấp số cộng.
Đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2019 - 2020 sở GDĐT Bình Định
Chủ Nhật ngày 24 tháng 05 năm 2020, sở Giáo dục và Đào tạo Bình Định tổ chức kỳ thi chọn học sinh giỏi (HSG) cấp tỉnh môn Toán 11 hệ THPT năm học 2019 – 2020. Đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2019 – 2020 sở GD&ĐT Bình Định gồm có 01 trang với 04 bài toán tự luận: Giải phương trình và hệ phương trình, Nhị thức Niu-tơn, Bài toán đếm, Giới hạn dãy số, Phương pháp tọa độ trong mặt phẳng Oxy, Bài toán hình học phẳng. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 11 năm 2019 – 2020 sở GD&ĐT Bình Định : + Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD tâm I. Các điểm G(1;2), E(-1;-2) lần lượt là trọng tâm của tam giác ABI và tam giác ADC. Tính độ dài cạnh hình vuông ABCD biết tung độ đỉnh A lớn hơn 0. [ads] + Cho tam giác ABC và M là điểm thay đổi trên cạnh BC. Gọi P, Q lần lượt là điểm đối xứng của M qua AC, AB. Trên đường tròn ngoại tiếp tam giác APQ lấy điểm N sao cho AN song song với BC. Chứng minh rằng đường thẳng MN luôn đi qua một điểm cố định khi M di động trên cạnh BC. + Có tất cả bao nhiêu số tự nhiên gồm 4 chữ số mà có tổng các chữ số của nó là bội số của 4.
Đề thi Olympic Toán 11 năm 2019 - 2020 trường THPT Mỹ Đức A - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi Olympic Toán 11 năm học 2019 – 2020 trường THPT Mỹ Đức A – Hà Nội, đề thi gồm có 01 trang với 05 bài toán, thời gian học sinh làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi Olympic Toán 11 năm 2019 – 2020 trường THPT Mỹ Đức A – Hà Nội : + Cho mặt phẳng (α) và hai đường thẳng chéo nhau d1, d2 cắt (α) tại A, B. Gọi ∆ là đường thẳng thay đổi luôn song song với (α), cắt d1 tại M, cắt d2 tại N. Đường thẳng d qua N luôn song song với d1 cắt (α) tại N’. a) Tứ giác AMNN’ là hình gì? b) Tìm tập hợp các điểm N’. c) Gọi O là trung điểm của AB, I là trung điểm của MN. Chứng minh rằng OI là đường thẳng cố định khi M di động. [ads] + Ba bạn A, B, C mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1;20]. Tính xác suất để tổng các lập phương của ba số được viết ra chia hết cho 3. + Một tứ giác có bốn góc tạo thành một cấp số nhân và số đo góc lớn nhất gấp 8 lần số đo góc nhỏ nhất. Tính số đo các góc của tứ giác.