Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán THPT năm 2018 2019 sở GD ĐT Thanh Hóa

Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán THPT năm 2018 2019 sở GD ĐT Thanh Hóa Bản PDF Thứ Năm ngày 21 tháng 03 năm 2019, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 hệ THPT năm học 2018 – 2019. Đề thi học sinh giỏi cấp tỉnh Toán lớp 11 THPT năm 2018 – 2019 sở GD&ĐT Thanh Hóa được biên soạn theo hình thức tự luận với 05 bài toán, thí sinh có 180 phút để hoàn thành bài thi, không kể thời gian giám thị coi thi phát đề, lời giải chi tiết của đề được biên soạn bởi thầy Nguyễn Xuân Chung, giáo viên Toán trường THPT Lê Lai – Ngọc Lặc – Thanh Hóa. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 11 THPT năm 2018 – 2019 sở GD&ĐT Thanh Hóa : + Có bao nhiêu số tự nhiên có 8 chữ số khác nhau mà có mặt hai chữ lẻ và ba chữ số chẵn, trong đó mỗi chữ số chẵn có mặt đúng hai lần?. [ads] + Trong hệ tọa độ Oxy, cho tam giác ABC nội tiếp đường tròn (C) tâm I, trọng tâm G(8/3;0), các điểm M(0;1), N(4;1) lần lượt đối xứng với I qua AB và AC, điểm K(2;-1) thuộc đường thẳng BC. Viết phương trình đường tròn (C). + Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Một mặt phẳng không qua S cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, P, Q thỏa mãn các hệ thức vectơ: SA = 2SM, SC = 3SP. Tính tỉ số SB/SN khi biểu thức T = (SB/SN)^2 + 4(SD/SQ)^2 đạt giá trị nhỏ nhất.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi cấp tỉnh lớp 11 môn Toán chuyên năm 2020 2021 sở GD ĐT Lạng Sơn
Nội dung Đề học sinh giỏi cấp tỉnh lớp 11 môn Toán chuyên năm 2020 2021 sở GD ĐT Lạng Sơn Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 chuyên năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Lạng Sơn; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thang điểm 20, thời gian học sinh làm bài thi là 180 phút (không kể thời gian giáo viên coi thi phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề Olympic lớp 11 môn Toán năm 2020 2021 liên cụm trường THPT Hà Nội
Nội dung Đề Olympic lớp 11 môn Toán năm 2020 2021 liên cụm trường THPT Hà Nội Bản PDF Thứ Bảy ngày 20 tháng 03 năm 2021, liên cụm trường THPT: Thanh Xuân – Cầu Giấy – Mê Linh – Sóc Sơn – Đông Anh (thành phố Hà Nội) tổ chức kỳ thi Olympic Toán lớp 11 năm học 2020 – 2021. Đề Olympic Toán lớp 11 năm 2020 – 2021 liên cụm trường THPT – Hà Nội được biên soạn theo dạng đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề Olympic Toán lớp 11 năm 2020 – 2021 liên cụm trường THPT – Hà Nội : + Cho tam giác ABC cân tại A. Gọi AH là đường cao xuất phát từ đỉnh A. Biết độ dài các đoạn thẳng BC, AH, AB theo thứ tự tạo thành một cấp số nhân. Tìm công bội của cấp số nhân đó. + Trong hộp có 25 tấm thẻ giống nhau được đánh số theo thứ tự từ 1 đến 25. Rút ngẫu nhiên ba tấm thẻ từ trong hộp. 1) Có bao nhiêu cách để rút được ít nhất hai tấm thẻ mang số lẻ? 2) Tính xác suất để trong ba số ghi trên ba tấm thẻ rút được không có hai số nào là hai số tự nhiên liên tiếp. +  Gọi là mặt phẳng thay đổi và luôn đi qua trung điểm Q của đoạn thẳng AG. Mặt phẳng cắt các tia lần lượt tại các điểm M, N, P (không trùng với điểm A).  Tìm giá trị lớn nhất của biểu thức T.
Đề học sinh giỏi lớp 11 môn Toán năm 2020 2021 trường Phùng Khắc Khoan Hà Nội
Nội dung Đề học sinh giỏi lớp 11 môn Toán năm 2020 2021 trường Phùng Khắc Khoan Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề học sinh giỏi Toán lớp 11 năm học 2020 – 2021 trường THPT Phùng Khắc Khoan, huyện Thạch Thất, thành phố Hà Nội; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán lớp 11 năm 2020 – 2021 trường Phùng Khắc Khoan – Hà Nội : + Cho một đa giác lồi (H) có 30 đỉnh A1A2…A30. Gọi X là tập hợp các tam giác có 3 đỉnh là 3 đỉnh của (H). Chọn ngẫu nhiên 2 tam giác trong X. Tính xác suất để chọn được 2 tam giác là các tam giác có 1 cạnh là cạnh của đa giác (H). + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, (a) là mặt phẳng thay đổi qua AB và cắt các cạnh SC, SD lần lượt tại M, N (M khác S, C và N khác S, D). Gọi K là giao điểm của hai đường thẳng AN và BM. Chứng minh rằng biểu thức T = AB/MN – BC/SK có giá trị không đổi. + Cho hình lăng trụ tam giác ABC.A’B’C’ có đáy là tam giác đều cạnh a, các mặt bên đều là hình vuông. Gọi M, N, E lần lượt là trung điểm của các cạnh AB, AA’, A’C’. Tính diện tích thiết diện khi cắt lăng trụ ABC.A’B’C’ bởi mặt phẳng (MNE).
Đề Olympic 27 tháng 4 lớp 11 môn Toán năm 2020 2021 sở GD ĐT Bà Rịa Vũng Tàu
Nội dung Đề Olympic 27 tháng 4 lớp 11 môn Toán năm 2020 2021 sở GD ĐT Bà Rịa Vũng Tàu Bản PDF Thứ Sáu ngày 12 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu tổ chức kỳ thi Olympic 27 tháng 4 môn Toán lớp 11 năm học 2020 – 2021. Đề Olympic 27 tháng 4 Toán lớp 11 năm 2020 – 2021 sở GD&ĐT Bà Rịa – Vũng Tàu gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút.