Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Khánh Hòa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Hai ngày 05 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Khánh Hòa : + Hưởng ứng phong trào “Ngày chủ nhật xanh” do Tỉnh đoàn phát động. Trường THCS X chọn 15 học sinh chia thành hai tổ tham gia trồng cây. Tổ I trồng được 30 cây, tổ II trồng được 36 cây. Biết rằng mỗi học sinh ở tổ I trồng được nhiều hơn mỗi học sinh ở tổ II là 1 cây. Hỏi mỗi tổ có bao nhiêu học sinh? + Gạch xây 3 lỗ (như hình vẽ) được làm bằng đất nung, thường được sử dụng trong các công trình có dạng hình hộp chữ nhật với chiều dài 220 mm, chiều rộng 105 mm, chiều cao 60 mm. Mỗi lỗ là hình trụ có trục song song với chiều cao viên gạch, đường kính đáy là 14 mm. Tính thể tích phần đất nung của một viên gạch. Biết V = abc 2 V r h lần lượt là công thức tính thể tích hình hộp chữ nhật và hình trụ (trong đó a, b, c là ba kích thước của hình hộp chữ nhật, r là bán kính đường tròn đáy, h là chiều cao hình trụ, lấy pi = 3,14). + Cho đường tròn (O) đường kính AB và điểm C thuộc đường tròn sao cho AC < BC (C khác A). Vẽ CH vuông góc với AB (H AB). a) Chứng minh ABC là tam giác vuông. Tính AC biết AB = 4cm, AH = 1cm. b) Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Vẽ DE vuông góc với AB (E AB). Chứng minh BECD là tứ giác nội tiếp. c) Gọi I là giao điểm của DE và BC, K là điểm đối xứng của I qua C, tiếp tuyến của (O) tại C cắt KA tại M. Chứng minh KA là tiếp tuyến của (O) và BM đi qua trung điểm của CH.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Toán) năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Thái Nguyên; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Thái Nguyên : + Cho A là một tập con của tập số tự nhiên. Tập A có phần tử nhỏ nhất là 1 phần tử lớn nhất là 100 và mỗi phần tử x thuộc A x 1 luôn biểu diễn được dưới dạng x a b trong đó a b thuộc A a (có thể bằng b). Hãy tìm một tập A có số phần tử nhỏ nhất. Giải thích cách tìm? + Cho tam giác ABC AB AC có ba góc nhọn nội tiếp đường tròn O và có trực tâm H. Gọi D E F lần lượt là chân đường cao kẻ từ A B C của tam giác ABC. Gọi I là trung điểm cạnh BC P là giao điểm của hai đường thẳng EF và BC. Đường thẳng DF cắt đường tròn ngoại tiếp tam giác HEF tại điểm thứ hai là K. a) Chứng minh PB PC PE PF và KE song song với BC; b) Đường thẳng PH cắt đường tròn ngoại tiếp tam giác HEF tại điểm thứ hai là Q. Chứng minh tứ giác BIQF nội tiếp. + Cho ba điểm A B C phân biệt theo thứ tự cùng nằm trên một đường thẳng. Qua điểm B kẻ đường thẳng d vuông góc với đường thẳng AC D là một điềm di động trên đường thẳng d D B. Đường tròn ngoại tiếp tam giác ACD cắt đường thẳng d tại điểm E khác D. Gọi P Q lần lượt là hình chiếu vuông góc của điểm B trên các đường thẳng AD và AE. Gọi R là giao điểm của hai đường thẳng BQ và CD S là giao điểm của hai đường thẳng BP và CE. Chứng minh: a) Tứ giác PQSR nội tiếp; b) Tâm đường tròn ngoại tiếp tứ giác PQSR luôn thuộc một đường thẳng cố định khi điểm D di động trên đường thẳng d.
Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 - 2023 sở GDĐT Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Trị; đề thi có đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 06 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Quảng Trị : + Tìm tất cả các số nguyên tố p và q thỏa mãn 2 2 p 2 1 q. + Ba cầu thủ của một đội bóng trò chuyện với nhau về số áo được in trên áo mỗi người, nội dung như sau: An: Tôi nhận ra rằng các số trên áo của chúng ta đều là số nguyên tố có hai chữ số. Bình: Tổng hai số trên áo của hai bạn là ngày sinh nhật của tôi đã trôi qua vào tháng này. Chung: Thật thú vị! Tổng hai số trên áo của hai bạn là ngày sinh nhật của tôi sắp tới vào tháng này. An: Và tổng hai số trên áo hai bạn là ngày hôm nay. Hãy xác định số áo của An, Bình và Chung. + Cho biểu thức 2 f x ax bx c (với abc a 0). Đặt 2 ∆ b ac 4. Chứng minh rằng nếu ∆ ≤ 0 thì f x 0 với mọi số thực x.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Tin) 2022 - 2023 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chuyên Tin) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 14 – 16 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Tin) 2022 – 2023 sở GD&ĐT Quảng Nam : + Cho đường tròn O và điểm I nằm ngoài đường tròn đó. Từ điểm I kẻ hai tiếp tuyến IA IB với đường tròn O (A B là các tiếp điểm). a) Chứng minh tứ giác OAIB nội tiếp đường tròn. b) Qua A kẻ đường thẳng song song với IB cắt đường tròn O tại điểm thứ hai là C (C khác A). Đường thẳng IC cắt đường tròn O tại điểm thứ hai là E (E khác C). Đường thẳng AE cắt IB tại K. Chứng minh 2 KB AK KE. c) Đường thẳng IC cắt AB tại D. Chứng minh IE DE  IC DC. + Cho parabol 2 P y x và đường thẳng d y x m 2 (m là tham số). Tìm tất cả các giá trị của m để d cắt P tại hai điểm phân biệt sao cho một trong hai giao điểm đó có hoành độ bằng 1. + Cho phương trình 2 x x m 6 0. Tìm tất cả các giá trị nguyên của tham số m để phương trình đã cho có hai nghiệm phân biệt 1 2 x x thoả mãn 2 2 1 1 2 2 2 2 38 x x x x.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 - 2023 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chuyên Toán) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 14 – 16 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022 – 2023 sở GD&ĐT Quảng Nam : + Cho tam giác nhọn ABC (AB < AC) nội tiếp trong đường tròn (O). Dựng đường kính NP của đường tròn (O) vuông góc với BC tại M (P nằm trên cung nhỏ BC). Tia phân giác của ABC cắt AP tại I. a) Chứng minh PI = PB. b) Chứng minh IMB = INA. + Cho tam giác nhọn ABC cân tại A và có tâm đường tròn ngoại tiếp là O. Lấy điểm D bên trong tam giác ABC sao cho BDC = 2BAC (AD không vuông góc với BC). a) Chứng minh bốn điểm B, C, D, O cùng nằm trên một đường tròn. b) Chứng minh OD là đường phân giác ngoài của BDC và tổng BD + CD bằng hai lần khoảng cách từ A đến đường thẳng OD. + Cho parabol 2 P 2 y x và đường thẳng (d): y ax b. Tìm các hệ số a b biết rằng (d) đi qua điểm 3 A 1 2 và có đúng một điểm chung với (P).