Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Thừa Thiên Huế

Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Thừa Thiên Huế Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD&ĐT Thừa Thiên Huế Đề tuyển sinh THPT môn Toán năm 2020 - 2021 sở GD&ĐT Thừa Thiên Huế Vào ngày ... tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 - 2021. Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 của sở GD&ĐT Thừa Thiên Huế bao gồm 01 trang với 06 bài toán dạng tự luận. Thời gian học sinh làm bài thi là 120 phút. Đề thi có đáp án và lời giải chi tiết. Dưới đây là một số câu hỏi được trích dẫn từ đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Thừa Thiên Huế: Câu 1: Để xây dựng thành phố Huế ngày càng đẹp hơn và khuyến khích người dân rèn luyện sức khỏe, Ủy ban nhân dân tỉnh Thừa Thiên Huế đã cho xây dựng tuyến đường đi bộ ven bờ Bắc sông Hương. Một người đi bộ trên tuyến đường này, khởi hành từ cầu Trường Tiền đến cầu Dã Viên rồi quay về lại cầu Trường Tiền hết tất cả 17/18 giờ. Tính vận tốc của người đó lúc về, biết rằng vận tốc lúc đi lớn hơn vận tốc lúc về là 0,5 km/h. Câu 2: Một chiếc cốc thủy tính có dạng hình trụ, chiều cao bằng 10cm và chứa một lượng nước có thể tích bằng một nửa thể tích của chiếc cốc. Một chiếc cốc thủy tinh khác có dạng hình nón (không chứa gì cả) và có bán kính đáy bằng bán kính đáy chiếc cốc hình trụ đã cho. Tính chiều cao của chiếc cốc có dạng hình nón (bỏ qua bề dày của thành cốc và đáy cốc). Câu 3: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Gọi M là một điểm bất kỳ trên cung nhỏ AC sao cho BCM nhọn (M không trùng A và C). Gọi E và F lần lượt là chân các đường vuông góc kẻ từ M đến BC và AC. Chứng minh rằng: a) Tứ giác MFEC nội tiếp. b) Tam giác FEM và tam giác ABM đồng dạng. c) MA.MQ = MP.MF và góc PQM = 90 độ. Đây là một số câu hỏi thú vị và phù hợp để học sinh thử sức và phát triển khả năng tư duy toán học. Chúc các em thành công trong kỳ thi tuyển sinh!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Trà Vinh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Trà Vinh; kỳ thi được diễn ra vào thứ Bảy ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Trà Vinh : + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = −x + 2. a) Vẽ đồ thị hai hàm số (P) và (d). b) Bằng phép toán, tìm tọa độ giao điểm của (P) và (d). + Thang cuốn ở siêu thị giúp khách hàng di chuyển từ tầng này sang tầng khác tiện lợi. Biết rằng thang cuốn được thiết kế có độ nghiêng so với mặt phẳng ngang là 36° (BAH = 36°) và có vận tốc là 0,5m/s. Một khách hàng đã di chuyển bằng thang cuốn từ tầng một lên tầng hai theo hướng AB hết 12 giây. Tính chiều cao (BH) của thang cuốn? (Kết quả làm tròn đến chữ số thập phân thứ nhất). + Từ điểm M nằm bên ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA và MB với đường tròn (A, B là tiếp điểm). a) Chứng minh tứ giác MAOB nội tiếp đường tròn. b) Vẽ đường kính AC của (O), gọi D là giao điểm của MC và (O), biết D khác C. Chứng minh MA2 = MD.MC. c) Hai đoạn thẳng AB và MO cắt nhau tại H, kẻ đường kính BE của (O). Chứng minh ba điểm E, H, D thẳng hàng.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Phú Yên; đề thi hình thức tự luận, gồm 01 trang với 06 bài toán, thời gian làm bài 150 phút. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Phú Yên : + Cho đoạn thẳng AB với M là trung điểm. Trên đường trung trực Mt của đoạn thẳng AB lấy điểm I bất kì. Vẽ tia Ax sao cho AI là phân giác góc BAx. Đường thẳng BI cắt Ax tại N. Gọi C là điểm đối xứng của A qua N, H là hình chiếu vuông góc của C lên AB. a) Chứng minh rằng tam giác NHB cân. b) Chứng minh đẳng thức: BH2 = HI.BN. c) Khi điểm I di chuyển trên đường trung trực Mt đến vị trí làm cho tam giác ABC vuông tại C, hãy tính tỉ số AB/AC. + Cho phương trình ax2 + bx + c = 0 (a ≠ 0) với a, b, c là số thực thỏa 2a – b + c = 0. Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt và 2 nghiệm không thể đều dương. + Cho tam giác ABC vuông tại A. Gọi D là trung điểm của AB, H là hình chiếu vuông góc của A lên đường thẳng DC. Đường thẳng qua C vuông góc với BC cắt đường thẳng AB tại E. Gọi I là hình chiếu vuông góc của E lên đường thẳng DC. a) Chứng minh BH vuông góc với AI. b) Đường thẳng qua B vuông góc với BH cắt đường thẳng DC tại K. Chứng minh tứ giác BCEK nội tiếp.
Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 - 2024 sở GDĐT Điện Biên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 cấp THPT môn Toán (chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Điện Biên; kỳ thi được diễn ra vào ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Điện Biên : + Một ô tô và một xe máy khởi hành cùng một lúc để đi từ A đến B với vận tốc mỗi xe không đổi trên toàn bộ quãng đường AB. Biết quãng đường AB dài 240 km. Do vận tốc xe ô tô lớn hơn vận tốc xe máy là 20 km/h nên ô tô đến B sớm hơn xe máy 2 giờ. Tính vận tốc mỗi xe. + Trong mặt phẳng tọa độ Oxy, cho Parabol (P): y = x2 và đường thẳng (d): y = −2x + m (với m là tham số). Tìm giá trị của tham số m để (d) cắt (P) tại hai điểm phân biệt A(x1;y1) và B(x2;y2) thoả mãn: y1 + y2 + 3x1x2 = 1. + Cho đường tròn (O;R), đường kính AB. Kẻ Ax là tiếp tuyến của đường tròn tâm O. Trên tia Ax lấy điểm C (C khác A), CB cắt đường tròn tại điểm D. Gọi I là giao điểm của OC và AD. Kẻ AH vuông góc với OC tại điểm H, AH cắt BC tại điểm M. a) Chứng minh tứ giác DMHI nội tiếp đường tròn. b) Chứng minh OH.OC = R2 và tam giác OHB đồng dạng với tam giác OBC. c) Chứng minh MD/MB = HD/HB.
Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 - 2024 sở GDĐT Tây Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Tây Ninh; kỳ thi được diễn ra vào ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 – 2024 sở GD&ĐT Tây Ninh : + Hệ thống cáp treo núi Bà Đen tỉnh Tây Ninh gồm hai tuyến Vân Sơn và Chùa Hang có tổng cộng 191 cabin, mỗi cabin có sức chứa 10 người. Nếu tất cả các cabin của hai tuyến đều chứa đủ số người theo qui định thì số người ở tuyến Vân Sơn nhiều hơn số người ở tuyến Chùa Hang là 350 người. Tính số cabin của mỗi tuyến. + Cho đường tròn (O) và điểm A nằm ngoài (O). Từ A vẽ các tiếp tuyến AB, AC với (O) (B và C là các tiếp điểm). Gọi D là trung điểm của đoạn thẳng AC, BD cắt (O) tại E (khác B) và BC cắt OA tại F. Chứng minh bốn điểm C, D, E, F cùng thuộc một đường tròn. + Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N lần lượt là trung điểm của HB và HC. Kẻ MK vuông góc với AN tại K, MK cắt AH tại I. Tính AH/AI.