Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 2 năm 2023 - 2024 phòng GDĐT Dương Kinh - Hải Phòng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Dương Kinh, thành phố Hải Phòng; kỳ thi được diễn ra vào ngày 06 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 2 năm 2023 – 2024 phòng GD&ĐT Dương Kinh – Hải Phòng : + Một cơ sở sản xuất kem chuẩn bị làm ra 1000 chiếc kem giống nhau theo đơn đặt hàng. Biết cốc đựng kem có dạng hình nón, có bề dày không đáng kể, chiều cao của cốc bằng 15cm, đường kính miệng cốc bằng 6cm. Kem được đổ đầy cốc và dư ra phía ngoài một lượng có dạng nửa hình cầu có bán kính bằng bán kính miệng cốc. Để hoàn thành đơn đặt hàng trên thì cơ sở sản xuất đó cần chuẩn bị một lượng kem bằng bao nhiêu? + Cho tam giác nhọn (AB < AC) nội tiếp đường tròn hai đường cao của tam giác ABC cắt nhau tại H. Vẽ đường kính của đường tròn. Gọi là giao điểm của đường thẳng với đường tròn (O) (K khác A). Gọi L là giao điểm của BC và EF, P là giao điểm của AC và KD. a) Chứng minh tứ giác nội tiếp. b) Gọi là trung điểm của đoạn thẳng. Chứng minh. c) Gọi T là giao điểm của đường tròn với đường tròn ngoại tiếp tam giác EFK (T khác K). Chứng minh rằng ba điểm L, K, T thẳng hàng. + Dịch vụ internet của 2 nhà mạng như sau: Nhà mạng A: Lắp đặt các thiết bị ban đầu mất 500 000 đồng và giá cước internet hàng tháng là 150 000 đồng. Nhà mạng B: Miễn phí các thiết bị ban đầu và giá cước internet hàng tháng là 200 000 đồng. Gọi y (đồng) là số tiền khách hàng phải trả khi dùng internet trong x tháng. a) Biểu diễn đại lượng y theo đại lượng x đối với nhà mạng A và nhà mạng B. b) Nếu chỉ đăng ký gói cước sử dụng trong 6 tháng thì đăng ký nhà mạng nào có lợi hơn? Giải thích vì sao?

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; kỳ thi được diễn ra vào ngày 11 tháng 06 năm 2023; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc : + Cho tam giác ABC vuông tại A, biết độ dài các cạnh AB = 6cm, AC = 8cm. Bán kính đường tròn ngoại tiếp tam giác ABC bằng? + Một hãng taxi công nghệ cao có giá cước (giá tiền khách hàng phải trả cho mỗi km) được tính theo các mức như sau: Mức 1: Giá mở cửa cho 1 km đầu tiên là 20000 đồng. Mức 2: Từ trên 1 km đến 25 km. Mức 3: Từ trên 25 km. Biết rằng anh A đi 32 km phải trả tiền taxi là 479500 đồng còn chị B đi 41 km phải trả 592000 đồng. Hỏi giá cước của hãng taxi trên ở mức 2 và mức 3 là bao nhiêu? Nếu khách hàng đi 24 km thì phải trả taxi bao nhiêu tiền? + Cho đường tròn (O) và BC là một dây cung khác đường kính của (O), A là điểm di động trên cung lớn BC sao cho AC > AB (A khác B). Gọi D là chân đường phân giác trong góc BAC (D thuộc BC). Đường thẳng đi qua O và vuông góc với BC cắt đường thẳng AD tại E. Kẻ EH, EK lần lượt vuông góc với AB và AC (H thuộc AB, K thuộc AC). a) Chứng minh EHAK là tứ giác nội tiếp. b) Gọi F là tâm đường tròn nội tiếp tam giác ABC. Chứng minh điểm E thuộc đường tròn (O) và E là tâm đường tròn ngoại tiếp tam giác BCF. c) Gọi M, N, I lần lượt là trung điểm của các đoạn thẳng AE, BE và BC. Chứng minh BMDN là tứ giác nội tiếp. Xác định vị trí điểm A để bốn điểm H, N, I, K thẳng hàng.
Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào Chủ Nhật ngày 11 tháng 06 năm 2023; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, một phân xưởng phải làm xong 900 sản phẩm trong một số ngày quy định. Thực tế, mỗi ngày phân xưởng đã làm được nhiều hơn 15 sản phẩm so với số sản phẩm phải làm một ngày theo kế hoạch. Vì thế 3 ngày trước khi hết thời hạn, phân xưởng đã làm xong 900 sản phẩm. Hỏi, theo kế hoạch, mỗi ngày phân xưởng phải làm bao nhiêu sản phẩm? (Giả định rẳng số sản phẩm mà phân xưởng làm được trong mỗi ngày là bằng nhau). + Một khối gỗ dạng hình trụ có bán kính đáy là 30cm và chiều cao là 120cm. Tính thể tích khối gỗ đó (lấy π ≈ 3,14). + Cho tam giác ABC có ba góc nhọn (AB < AC), nội tiếp đường tròn (O). Tiếp tuyến tại điểm A của đường tròn (O) cắt đường thẳng BC tại điểm S. Gọi I là chân đường vuông góc kẻ từ điểm O đến đường thẳng BC. 1. Chứng minh tứ giác SAOI nội tiếp. 2. Gọi H, D lần lượt là chân các đường vuông góc kẻ từ điểm A đến các đường thẳng SO, BC. Chứng minh OAH = IAD. 3. Vẽ đường cao CE của tam giác ABC. Gọi Q là trung điểm của đoạn thẳng BE. Đường thẳng QD cắt đường thẳng AH tại điểm K. Chứng minh BQ.BA = BD.BI và đường thẳng CK song song với đường thẳng SO.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thanh Hóa. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Thanh Hóa : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y = ax + b. Tìm a và b để đường thẳng (d) có hệ số góc bằng 3 và đi qua điểm M(-1;2). + Cho phương trình x2 − 2mx – m2 − 2 = 0 (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 (với x1 < x2) thỏa mãn hệ thức x2 − 2|x1| – 3x1x2 = 3m2 + 3m + 4. + Cho đường tròn (O) và một điểm M nằm ngoài đường tròn. Từ điểm M kẻ hai tiếp tuyến MA, MB đến (O) (với A và B là các tiếp điểm). Gọi C là điểm đối xứng với B qua O, đường thẳng MC cắt đường tròn (O) tại D (D khác C). 1. Chứng minh MAOB là tứ giác nội tiếp. 2. Gọi N là giao điểm của hai đường thẳng AD và MO. Chứng minh MN2 = ND.NA. 3. Gọi H là giao điểm của MO và AB. Chứng minh (HA/HD)^2 – AC/HN = 1.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Đắk Lắk. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Đắk Lắk : + Một khu vườn hình chữ nhật có chiều rộng ngắn hơn chiều dài 45m. Tính diện tích của khu vườn, biết rằng nếu chiều dài giảm 2 lần và chiều rộng tăng 3 lần thì chu vi khu vườn không thay đổi. + Cho nửa đường tròn tâm O đường kính AB. Gọi M là điểm chính giữa cung AB, E là điểm trên cung AM (E khác A và M). Lấy điểm F trên đoạn BE sao cho BF = AE. Gọi K là giao điểm của MO và BE. a) Chứng minh rằng EAOK là tứ giác nội tiếp. b) Chứng minh rằng AEMF vuông cân. c) Hai đường thẳng AE và OM cắt nhau tại D. Chứng minh rằng MK.ED = MD.EK. + Bút chì có dạng hình trụ, có đường kính đáy 8mm và chiều cao bằng 180mm. Thân bút chì được làm bằng gỗ, phần lõi được làm bằng than chì. Phần lõi có dạng hình trụ có chiều cao bằng chiều dài bút và đáy là hình tròn có đường kính 2mm. Tính thể tích phần gỗ của 2024 chiếc bút chì (lấy pi = 3,14).