Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chinh phục VDC Hình học luyện thi THPT năm 2023 - Phan Nhật Linh

Tài liệu gồm 491 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, hướng dẫn chinh phục VDC Hình học luyện thi THPT năm 2023. LỜI NÓI ĐẦU : Các em học sinh, quý thầy cô và bạn đọc thân mến! Cuốn sách “Chinh phục Vận dụng – Vận dụng cao Hình học 2023” này được nhóm tác giả biên soạn với mục đích giúp các em học sinh khá giỏi trên toàn quốc chinh phục được các câu khó trong đề thi của Bộ giáo dục trong các năm gần đây. Trong mỗi cuốn sách, chúng tôi trình bày một cách rõ ràng và khoa học, tạo sự thuận lợi nhất cho các em học tập và tham khảo. Tất cả các bài tập trong sách chúng tôi đều tóm tắt lý thuyết và tiến hành giải chi tiết 100% để các em tiện lợi cho việc ôn tập, so sánh đáp án và tra cứu thông tin. Để có thể biên soạn đầy đủ và hoàn thiện bộ sách này, nhóm tác giả có sưu tầm, tham khảo một số bài toán trích từ đề thi của các Sở, trường Chuyên trên các nước và một số thầy cô trên toàn quốc. Chân thành cảm ơn quý thầy cô đã sáng tạo ra các bài toán hay và các phương pháp giải toán hiệu quả nhất. Mặc dù nhóm tác giả đã tiến hành biên soạn và phản biện kĩ lưỡng nhất nhưng vẫn không tránh khỏi sai sót. Chúng tôi rất mong nhận được những ý kiến phản hồi và đóng góp từ quý thầy cô, các em học sinh và bạn đọc để cuốn sách trở nên hoàn thiện hơn. Cuối cùng, nhóm tác giả xin gửi lời chúc sức khỏe đến quý thầy cô, các em học sinh và quý bạn đọc. Chúc quý vị có thể khai thác hiệu quả nhất các kiến thức khi cầm trên tay cuốn sách này! Trân trọng. MỤC LỤC : CHƯƠNG 1: KHOẢNG CÁCH VÀ GÓC TRONG KHÔNG GIAN. Chủ đề 01. Khoảng cách trong không gian 1. Chủ đề 02. Góc trong không gian 58. CHƯƠNG 2: KHỐI ĐA DIỆN VÀ THỂ TÍCH KHỐI ĐA DIỆN. Chủ đề 03. Thể tích khối chóp 112. Chủ đề 04. Thể tích khối lăng trụ 159. Chủ đề 05. Tỷ lệ thể tích khối đa diện 190. Chủ đề 06. Cực trị hình học không gian 241. CHƯƠNG 3: KHỐI TRÒN XOAY VÀ THỂ TÍCH KHỐI TRÒN XOAY. Chủ đề 07. Khối nón – trụ – cầu 290. Chủ đề 08. Khối cầu ngoại tiếp khối đa diện 322. CHƯƠNG 4: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN. Chủ đề 09. Phương trình mặt phẳng 363. Chủ đề 10. Phương trình đường thẳng 387. Chủ đề 11. Phương trình mặt cầu 426. Chủ đề 12. Ứng dụng phương pháp tọa độ trong không gian 477.

Nguồn: toanmath.com

Đọc Sách

201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán có đáp án chi tiết (phần 2)
Tài liệu gồm 205 trang, được biên soạn bởi tác giả Nguyễn Thành Nhân, tuyển tập 201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán có đáp án và lời giải chi tiết (phần 2); các câu hỏi được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và các sở GD&ĐT trên toàn quốc. Trích dẫn 201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán có đáp án chi tiết (phần 2): + Trong các số phức z dưới đây, số phức nào thỏa mãn z 1 và 3 z z 2 đạt giá trị lớn nhất? + Gọi S là tập hợp tất cả các số phức z thoả mãn z 1 34 và z mi z m i 1 2. Gọi 1 2 z z là hai số phức thuộc S sao cho 1 2 z z nhỏ nhất, giá trị của 1 2 z z bằng? + Xét số phức z có phần thực dương và ba điểm A B C lần lượt là điểm biểu diễn của các số phức 1 z z và 1 z z. Biết tứ giác OABC là một hình bình hành, giá trị nhỏ nhất của 2 1 z z bằng? + Một trang giấy A4 kích thức 21 cm x 29,7 cm có thể viết được 50 dòng, mỗi dòng có 75 chữ số (chữ số trong hệ thập phân). Ngày 25 / 01 / 2013, người ta đã tìm được số nguyên tố Mersenne 57885161 2 1. Nếu viết số nguyên tố này theo hệ thập phân trên trang giấy A4 nói trên thì cần bao nhiêu tờ giấy A4, biết rằng mỗi tờ giấy tương ứng với 2 trang? + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu 2 2 2 S x y z x y z 4 4 2 7 0 và đường thẳng m d là giao tuyến của hai mặt phẳng x m y mz 1 2 4 4 0 và 2 2 1 8 0 x my m. Khi m thay đổi các giao điểm của m d và S nằm trên một đường tròn cố định. Tính bán kính r của đường tròn đó.
Tổng hợp công thức Toán THPT - Nguyễn Thanh Tân
Tài liệu gồm 24 trang, được sưu tầm và biên soạn bởi thầy giáo Nguyễn Thanh Tân (giáo viên Toán trường THPT Nho Quan C, tỉnh Ninh Bình), tổng hợp công thức Toán THPT (lớp 10 – lớp 11 – lớp 12).
201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán có đáp án chi tiết
Tài liệu gồm 202 trang, tuyển tập 201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán có đáp án và lời giải chi tiết; các câu hỏi được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và các sở GD&ĐT trên toàn quốc. Trích dẫn tài liệu 201 câu hỏi chọn lọc ôn thi tốt nghiệp THPT môn Toán có đáp án chi tiết : + Có bao nhiêu số thực m để đường thẳng y x m cắt đồ thị hàm số 1 3 2 2 3 2 3 3 y x m x m x m tại ba điểm phân biệt A m B C 0 sao cho đường thẳng OA là phân giác của góc BOC. + Có bao nhiêu số nguyên a 200 200 để phương trình ln 1 ln 1 x x a e e x x a có nghiệm thực duy nhất. + Ở loài Ong, Ong đực chỉ có mẹ, còn Ong cái có cả bố và mẹ. Hỏi một con Ong đực có tổ tiên ở đời thứ n tuân theo quy luật dãy số nào trong các dãy số sau? + Nhân một ngày Thứ năm đẹp trời nhà Vua đến thăm phủ Hoài Đức và dự lễ hội săn bắn. Trường bắn được xây dựng đặc biệt có dạng một tam giác vuông tại A và AB km 1 như hình vẽ. Con mồi chạy trên cạnh huyền theo hướng từ B đến C. Nhà Vua đứng ở vị trí đỉnh A của tam giác vuông và giương cung bắn. Mũi tên trúng con mồi tại điểm M. Tại đó, người hầu xác định được tích vô hướng giữa chiều mũi tên và hướng chạy con mồi thỏa mãn 7 4 AM BC và 3 4 AM BC. + Cho hàm số y f x có đạo hàm trên và đồ thị C. Tiếp tuyến của đồ thị C tại điểm 2 m có phương trình là y x 4 6. Tiếp tuyến của các đồ thị hàm số y f f x và 2 y f x 3 10 tại điểm có hoành độ bằng 2 có phương trình lần lượt là y b ax và y cx d. Tính giá trị của biểu thức ac S bd có bao nhiêu chữ số?
Chinh phục vận dụng - vận dụng cao Giải tích - Phan Nhật Linh
Tài liệu gồm 526 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tuyển chọn và hướng dẫn giải các bài toán vận dụng – vận dụng cao Giải tích, gồm các chủ đề: hàm số, mũ và logarit, tích phân, số phức, tổ hợp và xác suất; tài liệu giúp các em học sinh lớp 12 rèn luyện để chinh phục mức điểm 8 – 9 – 10 trong đề thi tốt nghiệp THPT môn Toán. CHƯƠNG 1: HÀM SỐ. Tính đơn điệu của hàm số. + Bài toán 1: Tính đơn điệu của hàm hợp và hàm tổng. + Bài toán 2: Tính đơn điệu của hàm số chứa trị tuyệt đối. Cực trị của hàm số phần 01. + Bài toán 1: Cực trị của hàm hợp. + Bài toán 2: Cực trị của hàm số chứa trị tuyệt đối. Cực trị của hàm số phần 02. Giá trị lớn nhất – Giá trị nhỏ nhất của hàm số. + Bài toán 1: Tìm GTLN – GTNN của hàm hợp. + Bài toán 2: GTLN – GTNN của hàm số chứa trị tuyệt đối. Tiệm cận của đồ thị hàm số. Sự tương giao của đồ thị hàm số. + Bài toán: Xét sự tương giao và biện luận nghiệm. Tiếp tuyến của đồ thị hàm số. CHƯƠNG 2: MŨ VÀ LOGARIT. Đề vận dụng cho mũ và logarit phần 01. Đề vận dụng cho mũ và logarit phần 02. Đề vận dụng cho mũ và logarit phần 03. Đề vận dụng cao mũ và logarit phần 04. CHƯƠNG 3: TÍCH PHÂN. Đề vận dụng cao tích phân phần 01. Đề vận dụng cao tích phân phần 01. CHƯƠNG 4: SỐ PHỨC. Đề vận dụng cao Số phức phần 01. Đề vận dụng cao số phức phần 02. CHƯƠNG 5: TỔ HỢP XÁC SUẤT. Đề vận dụng cao tổ hợp xác suất.