Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 trường THCS Cầu Giấy - Hà Nội

Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 trường THCS Cầu Giấy – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút; kỳ thi được diễn ra vào ngày … tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 trường THCS Cầu Giấy – Hà Nội : + Cho a b c là các số thực thỏa mãn 0 a b c 1. Tìm giá trị lớn nhất của biểu thức T. + Cho tam giác nhọn ABC với AB là cạnh nhỏ nhất, gọi D là trung điểm cạnh AB và P là điểm trong tam giác sao cho CAP = CBP = ACB. Gọi M, N lần lượt là chân đường vuông góc hạ từ P xuống BC và AC. Đường thẳng đi qua M và song song với AC cắt đường thẳng đi qua N và song song với BC tại K. Gọi E là giao điểm của KN và AP; F là giao điểm của KM và BP. a. Chứng minh rằng E và F lần lượt là trung điểm của AP và BP. b. Chứng minh rằng D nằm trên trung trực của MN. c. Chứng minh rằng MDN = 2MKN. + Có 27 con Robot tham gia một cuộc đua. Trong mỗi vòng sẽ có 3 con tham gia, mỗi con Robot chạy với tốc độ cố định, không đổi giữa các vòng đua và tốc độ của mỗi con Robot là đôi một khác nhau. Sau mỗi vòng, người ta ghi lại thứ tự về thành tích của các Robot tham gia vòng đua đó. Hỏi 14 vòng đua có đủ để xác định thứ tự của hai con Robot chạy nhanh nhất hay không?

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi tỉnh Toán THCS năm 2021 - 2022 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi tỉnh Toán THCS năm 2021 – 2022 sở GD&ĐT Thanh Hóa; kỳ thi được diễn ra vào Chủ Nhật ngày 26 tháng 12 năm 2021.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Ninh Bình
Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Ninh Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Ninh Bình : + Cho đường tròn (O) và dây BC cố định (BC không phải là đường kính). Điểm A di động trên cung lớn BC sao cho tam giác ABC là tam giác nhọn. Gọi E là điểm đối xứng của B qua đường thẳng AC và F là điểm đối xứng của C qua đường thẳng AB. Gọi K là giao điểm của hai đường thẳng EC và FB, H là giao điểm của hai đường thẳng BE và CF. a) Chứng minh FAHB và ACKF là các tứ giác nội tiếp. b) Chứng minh KA là phân giác của góc BKC và ba điểm K, O, A thẳng hàng. c) Xác định vị trí của điểm A sao cho tứ giác BKCO có diện tích lớn nhất. + Cho 16 số nguyên dương lớn hơn 1 và nhỏ hơn 2021 đôi một nguyên tố cùng nhau. Chứng minh trong 16 số trên có ít nhất một số là số nguyên tố. + Cho 8045 điểm trên một mặt phẳng sao cho cứ 3 điểm bất kì thì tạo thành một tam giác có diện tích nhỏ hơn 1. Chứng minh rằng luôn có thể có ít nhất 2012 điểm nằm trong tam giác hoặc trên cạnh của một tam giác có diện tích nhỏ hơn 1.
Đề thi HSG Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Vinh - Nghệ An
Đề thi HSG Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Vinh – Nghệ An gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian giao đề).
Đề thi HSG thành phố Toán 9 năm 2021 - 2022 phòng GDĐT Đà Lạt - Lâm Đồng
Đề thi HSG thành phố Toán 9 năm 2021 – 2022 phòng GD&ĐT Đà Lạt – Lâm Đồng gồm 02 trang với 10 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Ba ngày 14 tháng 12 năm 2021.