Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh năm học 2019 – 2020 sở GD ĐT Hà Nội (chuyên Toán)

Nội dung Đề Toán tuyển sinh năm học 2019 – 2020 sở GD ĐT Hà Nội (chuyên Toán) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh năm học 2019 – 2020 sở GD ĐT Hà Nội (chuyên Toán) Đề Toán tuyển sinh năm học 2019 – 2020 sở GD ĐT Hà Nội (chuyên Toán) Vào ngày 03 tháng 06 năm 2019, sở Giáo dục và Đào tạo thành phố Hà Nội đã tổ chức kỳ thi Toán tuyển sinh vào lớp 10 Trung học Phổ thông cho năm học 2019 – 2020. Đây là kỳ thi dành cho các thí sinh mong muốn vào các lớp chuyên Toán. Đề Toán tuyển sinh lớp 10 năm học 2019 – 2020 của sở GD&ĐT Hà Nội (chuyên Toán – Vòng 2) bao gồm 1 trang, đề được biên soạn theo dạng đề tự luận với 5 bài toán. Thời gian cho học sinh làm bài là 150 phút. Trích dẫn một số câu hỏi từ đề Toán tuyển sinh lớp 10 năm học 2019 – 2020 sở GD&ĐT Hà Nội (chuyên Toán): + Trong tam giác ABC có ba góc nhọn (AB < AC), nội tiếp đường tròn (O). Điểm I là tâm của đường tròn nội tiếp tam giác ABC. Tia AI cắt đoạn thẳng BC tại điểm J, cắt đường tròn (O) tại điểm thứ hai M (M khác A). Chứng minh rằng MI^2 = MJ.MA. Kẻ đường kính MN của đường tròn (O). Đường thẳng MN cắt các tia phân giác trong của góc ABC và góc ACB lần lượt tại các điểm P và Q. Chứng minh N là trung điểm của đoạn thẳng PQ. Lấy điểm E bất kỳ thuộc cung nhỏ MC của đường tròn (O) (E khác M ). Gọi F là điểm đối xứng với điểm I qua điểm E. Gọi R là giao điểm của hai đường thẳng PC và QB. Chứng minh bốn điểm P, Q, R, F cùng thuộc một đường tròn. + Trên mặt phẳng với mỗi điểm được tô bởi một trong hai màu xanh hoặc đỏ. Chứng minh rằng tồn tại hai điểm được tô bởi cùng một màu và có khoảng cách bằng d. Điều này sẽ dẫn đến việc tồn tại hai tam giác vuông và đồng dạng với nhau theo tỉ số k = 1/2019. Đề Toán tuyển sinh năm học 2019 – 2020 của sở GD&ĐT Hà Nội đã tạo cơ hội cho các học sinh thể hiện năng lực và kiến thức toán học của mình. Hãy cùng chúng tôi chờ đón kết quả của các thí sinh trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Đồng Nai
Nội dung Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Đồng Nai Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Đồng Nai Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Đồng Nai Sytu xin gửi đến quý thầy, cô giáo và các em học sinh đề tuyển sinh chính thức vào lớp 10 THPT môn Toán năm học 2023 – 2024 của sở Giáo dục và Đào tạo tỉnh Đồng Nai. Kỳ thi sẽ diễn ra vào sáng thứ Sáu ngày 02 tháng 06 năm 2023. Trích dẫn một số câu hỏi từ đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Đồng Nai: Câu 1: Hai vòi nước cùng chảy vào một bể cạn sau 40 phút thì bể đầy. Nếu mở vòi thứ nhất chảy trong 15 phút rồi khóa lại, sau đó mở vòi thứ hai chảy tiếp trong 20 phút thì lúc này lượng nước trong bể chiếm thể tích 5/12 của bể nước. Hỏi nếu mở riêng từng vòi thì thời gian để mỗi vòi chảy đầy bể là bao lâu? Câu 2: Một hình nón có bán kính đáy r = 6cm, độ dài đường sinh l = 10cm. Tính thể tích của hình nón đó. Câu 3: Cho tam giác ABC vuông tại A, trên cạnh AB lấy điểm M (M khác A và M khác B). Từ điểm M vẽ đường thẳng MN vuông góc với BC (N thuộc BC), đường thẳng MN cắt đường thẳng AC tại K. Chứng minh tứ giác AMNC nội tiếp. Chứng minh ABK = ACM. Đoạn thẳng BK cắt đường tròn đường kính BM tại điểm D (D khác B). Gọi I là tâm và r là bán kính của đường tròn nội tiếp tam giác BKC. Chứng minh 1/r = 1/KN + 1/CD + 1/AB. Hãy chuẩn bị kỹ càng và tự tin trước kỳ thi sắp tới, chúc các em thành công!
Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Quảng Ninh
Nội dung Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Quảng Ninh Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2023 - 2024 sở GD&ĐT Quảng Ninh Đề tuyển sinh vào môn Toán năm 2023 - 2024 sở GD&ĐT Quảng Ninh Xin chào quý thầy cô và các em học sinh! Hôm nay, chúng ta sẽ cùng điểm qua đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 THPT môn Toán cho năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Quảng Ninh. Kỳ thi này sẽ diễn ra vào sáng thứ Sáu ngày 02 tháng 06 năm 2023. Trích dẫn một số câu hỏi từ đề Tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 của sở GD&ĐT Quảng Ninh: 1. Hai địa điểm A và B cách nhau 280 km. Hai ô tô cùng xuất phát từ A đến B. Biết vận tốc của xe thứ nhất lớn hơn vận tốc của xe thứ hai 10 km/h và xe thứ nhất đến B sớm hơn xe thứ hai 30 phút. Hãy tính vận tốc của mỗi xe? 2. Cho nửa đường tròn tâm O, đường kính BC. Trên nửa đường tròn (O) lấy điểm A, gọi H là hình chiếu của A trên BC. Trên cung AC của nửa đường tròn (O) lấy điểm D, gọi E là hình chiếu của A trên BD, I là giao điểm của hai đường thẳng AH và BD. Hãy chứng minh các công thức liên quan đến các đường thẳng trên. 3. Một người thợ cơ khí cần cắt vừa đủ một cây sắt dài 100 dm thành các đoạn để hàn lại thành khung một hình lập phương và một hình hộp chữ nhật. Biết hình hộp chữ nhật có chiều dài gấp 6 lần chiều rộng và chiều cao bằng chiều rộng. Hãy tính độ dài các đoạn sắt sao cho tổng thể tích của hai hình thu được là nhỏ nhất? Chúc quý thầy cô và các em học sinh ôn tập tốt và thành công trong kỳ thi sắp tới!
Đề tuyển sinh THPT môn Toán năm 2023 2024 sở GD ĐT Phú Yên
Nội dung Đề tuyển sinh THPT môn Toán năm 2023 2024 sở GD ĐT Phú Yên Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2023 - 2024 sở GD&ĐT Phú Yên Đề tuyển sinh THPT môn Toán năm 2023 - 2024 sở GD&ĐT Phú Yên Chúng ta hãy cùng tìm hiểu về đề tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 - 2024 tại sở Giáo dục và Đào tạo tỉnh Phú Yên. Đề thi bao gồm 30% câu hỏi trắc nghiệm (12 câu) và 70% câu hỏi tự luận (4 câu), thời gian làm bài là 120 phút. Kỳ thi sẽ diễn ra vào thứ Năm ngày 01 tháng 06 năm 2023. Trích dẫn một số câu hỏi trong đề tuyển sinh: Cho hai hàm số \( y = \frac{1}{2}x^2 \) và \( y = ax + b \). Tìm các hệ số a, b biết đường thẳng \( y = ax + b \) đi qua điểm M(-2;-2) và N(4;1). Giải bài toán: Một khu đất hình chữ nhật có tỷ số hai kích thước là 2/3. Người ta làm một sân bóng đá mini 5 người ở giữa, chừa lối đi xung quanh (lối đi thuộc khu đất). Lối đi rộng 2 m và diện tích 224 m2. Tính các kích thước của khu đất. Cho tam giác ABC vuông tại A, có AB = 3 cm, AC = 4 cm. Đường tròn tâm B bán kính BA và đường tròn tâm C bán kính CA cắt nhau tại điểm thứ hai D. Tính độ dài đoạn AD. Hãy thử sức và cố gắng giải quyết những bài toán thú vị này trong đề tuyển sinh môn Toán năm 2023 - 2024 tại Phú Yên nhé!
Đề tuyển sinh môn Toán (không chuyên) năm 2023 2024 sở GD ĐT Bạc Liêu
Nội dung Đề tuyển sinh môn Toán (không chuyên) năm 2023 2024 sở GD ĐT Bạc Liêu Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (không chuyên) năm 2023 - 2024 sở GD ĐT Bạc Liêu Đề tuyển sinh môn Toán (không chuyên) năm 2023 - 2024 sở GD ĐT Bạc Liêu Xin chào quý thầy cô và các em học sinh! Sytu hân hạnh giới thiệu đến quý vị đề thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Bạc Liêu. Kỳ thi sẽ diễn ra vào ngày 31 tháng 05 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 - 2024 sở GD&ĐT Bạc Liêu: + Tìm hệ số a để đồ thị hàm số \(y = ax^2\) đi qua điểm M(-1;2). Vẽ đồ thị của hàm số \(y = ax^2\) với giá trị a vừa tìm được. + Cho phương trình bậc hai \(x^2 - 2x + m - 2 = 0\) (1) với m là tham số. a) Xác định các hệ số a, b, c của phương trình (1). b) Giải phương trình (1) khi m = -1. c) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: \(3(x_1^2 + x_2^2) + x_1^2x_2^2 = 11\). + Trên đường tròn tâm O, đường kính AB = 2R, lấy hai điểm C, D sao cho CD vuông góc với B tại H (H thuộc đoạn OA, H khác O và A). Gọi M là điểm trên đoạn CD (M khác C và D, CM > DM), E là giao điểm của AM với đường tròn (O) (E khác A), N là giao điểm của hai đường thẳng BE và CD. a) Chứng minh tứ giác MEBH nội tiếp đường tròn. b) Chứng minh: \(NC \times ND = NB \times NE\). c) Khi AC = R, xác định vị trí của điểm M để \(2AM + AE\) đạt giá trị nhỏ nhất. Hy vọng rằng đề thi sẽ giúp các em chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh thành công! Xin cám ơn!