Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL lớp 11 môn Toán lần 1 năm học 2018 2019 trường Tiên Du 1 Bắc Ninh

Nội dung Đề thi KSCL lớp 11 môn Toán lần 1 năm học 2018 2019 trường Tiên Du 1 Bắc Ninh Bản PDF Đề thi KSCL Toán lớp 11 lần 1 năm học 2018 – 2019 trường Tiên Du 1 – Bắc Ninh mã đề 201 gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, thời gian làm bài 90 phút, kỳ thi được tổ chức nhằm đánh giá chất lượng môn Toán thường xuyên đối với học sinh khối 11 và thúc đẩy các em không ngừng rèn luyện nâng cao kiến thức môn Toán, đề thi có đáp án các mã đề 201 → 208. Trích dẫn đề thi KSCL Toán lớp 11 lần 1 năm học 2018 – 2019 trường Tiên Du 1 – Bắc Ninh : + Cho tập A gồm n phần tử (n ≥ k ≥ 1, k, n thuộc N). Mỗi kết quả của việc lấy ra k phần tử khác nhau của tập A và sắp xếp chúng theo một thứ tự nào đó được gọi là: A. Một tổ hợp chập k của n phần tử. B. Một chỉnh hợp chập n của k phần tử. C. Một chỉnh hợp chập k của n phần tử. D. Một hoán vị của k phần tử. + Cho một đa giác đều gồm 2n đỉnh (n ≥ 2, n thuộc N). Chọn ngẫu nhiên 3 đỉnh trong 2n đỉnh của đa giác. Biết xác suất 3 đỉnh được chọn tạo thành một tam giác vuông là 1/5. Trong các mệnh đề sau, mệnh đề nào đúng? [ads] + Trong các mệnh đề sau, mệnh đề nào sai? A. Có một và chỉ một mặt phẳng đi qua 3 điểm phân biệt. B. Tồn tại bốn điểm không cùng thuộc một mặt phẳng. C. Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng có một điểm chung khác nữa. D. Nếu một đường thẳng có hai điểm phân biệt thuộc một mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề sát hạch Toán 11 lần 3 năm 2019 - 2020 trường THPT Đoàn Thượng - Hải Dương
Đề sát hạch Toán 11 lần 3 năm 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương mã đề 132, đề được biên soạn theo dạng đề thi trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề sát hạch Toán 11 lần 3 năm 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương : + Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Tính xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho. [ads] + Cho hàm số y = (x + 2)/(2x + 3) có đồ thị là đường cong (C). Đường thẳng có phương trình y = ax + b là tiếp tuyến của (C) cắt trục hoành tại A, cắt trục tung tại B sao cho tam giác OAB là tam giác vuông cân tại O, với O là gốc tọa độ. Khi đó tổng S = a + b bằng bao nhiêu? + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu của A lên SC, SD. Khẳng định nào sau đây đúng?
Đề kiểm tra chất lượng Toán 11 lần 2 năm 2019 - 2020 trường THPT Lý Thái Tổ - Bắc Ninh
Thứ Bảy ngày 30 tháng 06 năm 2020, trường THPT Lý Thái Tổ, thị xã Từ Sơn, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra chất lượng môn Toán đối với học sinh lớp 11 lần thứ hai năm học 2019 – 2020. Đề kiểm tra chất lượng Toán 11 lần 2 năm 2019 – 2020 trường THPT Lý Thái Tổ – Bắc Ninh gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 132, 209, 357, 485, 570, 628, 743, 896. Trích dẫn đề kiểm tra chất lượng Toán 11 lần 2 năm 2019 – 2020 trường THPT Lý Thái Tổ – Bắc Ninh : + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, với AB = 2a, AD = CD = a. Cạnh bên SA vuông góc với đáy và SA = 2a. Gọi M là điểm thuộc cạnh AB sao cho AB = 4AM và (x) là mặt phẳng đi qua M, vuông góc với cạnh CD. Tính diện tích thiết diện của hình chóp S.ABCD với mặt phẳng (x). [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, biết AB = 2a, AD = a, SA = 3a và SA vuông góc với mặt phẳng đáy. Gọi M là trung điểm của CD, điểm E thuộc cạnh SA sao cho SE = 2a. Cosin góc giữa hai mặt phẳng (SAC) và (BME). + Cho hàm số f(x) có đạo hàm trên R và có đồ thị như hình vẽ. Biết rằng tại các điểm A, B, C đồ thị hàm số có tiếp tuyến được thể hiện như trong hình. Chọn khẳng định đúng trong các khẳng định sau?
Đề chọn lớp chất lượng cao Toán 11 năm 2020 - 2021 trường Yên Phong 2 - Bắc Ninh
Nhằm tuyển chọn những em học sinh lớp 11 giỏi môn Toán vào học tại các lớp chất lượng cao trong năm học tới, thứ Bảy ngày 04 tháng 07 năm 2020, trường Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi chọn lớp chất lượng cao Toán 11 năm học 2020 – 2021. Đề chọn lớp chất lượng cao Toán 11 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh gồm có 02 trang với 08 câu trắc nghiệm và 04 câu tự luận, phần trắc nghiệm chiếm 02 điểm, phần tự luận chiếm 08 điểm, thời gian làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề chọn lớp chất lượng cao Toán 11 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh : + Cho hình lăng trụ đứng ABC.A′B′C′. Khẳng định nào sau đây đúng? A. Mỗi mặt đáy của hình lăng trụ ABC.A′B′C′ là một tam giác đều. B. Mỗi mặt bên của hình lăng trụ ABC.A′B′C′ là một hình chữ nhật. C. Các cạnh đáy của hình lăng trụ ABC.A′B′C′ song song và bằng nhau. D. Hai cạnh bên của hình lăng trụ ABC.A′B′C′ vuông góc với nhau. + Có 20 học sinh, trong đó có một bạn tên là Thái và một bạn tên là Bình. Có 20 ghế được kê thành 4 dãy ngang, mỗi dãy gồm 5 ghế. Xếp 20 bạn học sinh đó ngồi vào 20 ghế đã cho, mỗi người ngồi một ghế. Tính xác suất để bạn Thái và bạn Bình luôn ngồi cùng dãy với nhau. [ads] + Xét hai phát biểu sau đây: (1) Nếu một cấp số nhân có công bội q = 1 thì mọi số hạng của nó bằng nhau. (2) Nếu một cấp số nhân có mọi số hạng bằng nhau thì nó có công bội q = 1. Khẳng định nào sau đây đúng? A. Chỉ (1) đúng. C. Chỉ (2) đúng. B. Cả (1) và (2) đều đúng. D. Cả (1) và (2) đều sai.
Đề khảo sát học kỳ 2 Toán 11 năm 2019 - 2020 trường THPT Liễn Sơn - Vĩnh Phúc
Đề khảo sát học kỳ 2 Toán 11 năm 2019 – 2020 trường THPT Liễn Sơn – Vĩnh Phúc gồm 02 trang với 12 câu trắc nghiệm và 06 câu tự luận, phần trắc nghiệm chiếm 3,0 điểm, phần tự luận chiếm 7,0 điểm, thời gian làm bài 90 phút. Trích dẫn đề khảo sát học kỳ 2 Toán 11 năm 2019 – 2020 trường THPT Liễn Sơn – Vĩnh Phúc : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Hai mặt phẳng (SAB), (SAD) cùng vuông góc với mặt đáy (ABCD) và SA = 2a. a. Chứng minh (SAC) vuông góc (SBD) b. Tính góc tạo bởi đường thẳng SC và mặt phẳng (ABCD). c. Gọi M là trung điểm của AD. Tính khoảng cách từ điểm O đến mặt phẳng (SMC). [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc với (ABCD) và SA = AB. Gọi E và F lần lượt là trung điểm của BC và SC. Tính góc giữa đường thẳng EF và mặt phẳng (SAD). + Viết phương trình tiếp tuyến của đồ thị hàm số y = 2x^3 – 3x^2 + 7x – 15 biết tiếp tuyến song song với đường thẳng y = 7x – 15.