Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 sở GDKHCN Bạc Liêu

Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 sở GDKHCN Bạc Liêu Bản PDF Sáng thứ Tư ngày 20 tháng 05 năm 2020, sở Giáo dục – Khoa học và Công nghệ tỉnh Bạc Liêu đã tổ chức kỳ thi kiểm tra chất lượng học kì 2 môn Toán lớp 12 năm học 2019 – 2020. Đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 sở GDKHCN Bạc Liêu gồm có 07 trang, đề được biên soạn theo dạng đề trắc nghiệm 100% với 50 câu hỏi và bài toán, nội dung đề thuộc các chương: Nguyên hàm, tích phân và ứng dụng, Số phức và Phương pháp tọa độ trong không gian; thời gian làm bài thi là 90 phút, đề thi có đáp án mã đề 123, 207, 345, 469. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 sở GDKHCN Bạc Liêu : + Hình (H) giới hạn bởi các đường y = f(x), x = a, x = b (với a < b) và trục Ox. Khi quay (H) quanh trục Ox ta được một khối tròn xoay có thể tích tính bằng công thức sau? + Cho f(x), g(x) là các hàm số liên tục và xác định trên R. Trong các mệnh đề sau, mệnh đề nào sai? [ads] + Cho số phức z thỏa mãn |z − 1| ≤ 2. Tập hợp các điểm biểu diễn số phức w = (1 + i√8)z – 1 là hình tròn có tâm và bán kính lần lượt là? + Trong không gian Oxyz, cho mặt cầu (S) có tâm I (1;-2;3) và tiếp xúc với mặt phẳng (P): 2x + 9y – 9z – 123 = 0. Số điểm có tọa độ nguyên thuộc mặt cầu (S) là? + Trong không gian Oxyz, cho mặt cầu (S): x^2 + y^2 + z^2 – 2x + 4y + 1 = 0 và đường thẳng d: x = 2 – t, y = t, z = m + t. Tổng các giá trị của m để d cắt (S) tại hai điểm phân biệt A và B sao cho các mặt phẳng tiếp diện của (S) tại A và B vuông góc với nhau bằng. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kỳ 2 Toán 12 năm 2023 - 2024 trường THPT Nguyễn Trãi - Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi kết thúc học kỳ 2 môn Toán 12 năm học 2023 – 2024 trường THPT Nguyễn Trãi, tỉnh Thái Bình; đề thi có đáp án trắc nghiệm mã đề 135 208 359 487. Trích dẫn Đề thi học kỳ 2 Toán 12 năm 2023 – 2024 trường THPT Nguyễn Trãi – Thái Bình : + Trong không gian Oxyz cho mặt cầu Sx y z 6 26 0 và đường thẳng 1 21 x y z d. Biết rằng trên đường thẳng d luôn tồn tại điểm M xyz với x > 0 sao cho từ M kẻ được ba tiếp tuyến MA, MB, MC đến mặt cầu (S) thỏa mãn AMB = 60, BMC = 90, CMA = 120. Khi đó giá trị biểu thức x y z 2 bằng? + Một khối trụ có thể tích 100π. Nếu chiều cao khối trụ tăng lên ba lần và giữ nguyên bán kính đáy thì được khối trụ mới có diện tích xung quanh bằng 100π. Bán kính đáy khối trụ ban đầu là? + Cho hàm số 3 2 fx và gx m (với m là m tham số thực) cùng với x 1 1 là hai điểm cực trị trong nhiều điểm cực trị của hàm số y gx. Khi đó số điểm cực trị của hàm y gx là?