Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết và bài tập hàm số lượng giác và phương trình lượng giác

Tài liệu gồm 64 trang tóm tắt các lý thuyết SGK, công thức, phân dạng và các bài tập hàm số lượng giác và phương trình lượng giác, giúp học sinh tham khảo trong quá trình học tập chương trình Đại số và Giải tích 11 chương 1. BÀI 1 . CÔNG THỨC LƯỢNG GIÁC CẦN NẮM. BÀI 2 . HÀM SỐ LƯỢNG GIÁC. Dạng 2.1 . Tìm tập xác định của hàm số lượng giác. Để tìm tập xác định của hàm số lượng giác ta cần nhớ: + Điều kiện xác định hàm số: y = tan f(x), y = cot f(x). + Một số trường hợp tìm tập xác định thường gặp. + Cần nhớ những trường hợp đặc biệt. Dạng 2.2 . Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác. + Dựa vào tập giá trị của hàm số lượng giác. + Kết luận: max y = M và min y = m. Dạng 2.3 . Xét tính chẵn lẻ của hàm số lượng giác. + Tìm tập xác định D của hàm số lượng giác. + Tính f(-x), nghĩa là sẽ thay x bằng -x, so sánh với f(x). [ads] BÀI 3 . PHƯƠNG TRÌNH LƯỢNG GIÁC. A. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. B. MỘT SỐ KỸ NĂNG GIẢI PHƯƠNG TRÌNH LƯỢNG GIÁC. Dạng 3.1 . Sử dụng thành thạo cung liên kết: cung đối nhau, cung bù nhau, cung phụ nhau, cung hơn kém π, cung hơn kém π/2, tính chu kỳ. Dạng 3.2 . Ghép cung thích hợp để áp dụng công thức tích thành tổng. Khi áp dụng tổng thành tích đối với hai hàm sin và cosin thì nên nhẩm (tổng và hiệu) hai cung mới này trước để nhóm hạng tử thích hợp sao cho xuất hiện nhân tử chung (cùng cung) với hạng tử còn lại hoặc cụm ghép khác trong phương trình cần giải. Dạng 3.3 . Hạ bậc khi gặp bậc chẵn của sin và cos. Mục đích cả việc hạ bậc để triệt tiêu hằng số không mong muốn và nhóm hạng tử thích hợp để sau khi áp dụng công thức (tổng thành tích sau khi hạ bậc) sẽ xuất hiện nhân tử chung hoặc làm bài toán đơn giản hơn. Dạng 3.4 . Xác định nhân tử chung để đưa về phương trình tích. Đa số đề thi, kiểm tra thường là những phương trình đưa về tích số. Do đó, trước khi giải ta phải quan sát xem chúng có những lượng nhân tử chung nào, sau đó định hướng để tách, ghép, nhóm phù hợp.

Nguồn: toanmath.com

Đọc Sách

Tài liệu chủ đề phương trình lượng giác thường gặp
Tài liệu gồm 44 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề phương trình lượng giác thường gặp, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1. I. KIẾN THỨC TRỌNG TÂM 1) Loại 1: Phương trình thuần nhất với sin x k và cos k x. 2) Loại 2: Phương trình đẳng cấp bậc hai với sin x và cos x. 3) Loại 3: Phương trình đẳng cấp bậc ba với sin x và cos x. 4) Loại 4: Phương trình có chứa sin x cos x. 5) Loại 5: Phương trình có chứa tan x cot x. 6) Loại 6: Một số các phương trình đối xứng tương tự. II. HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1: Phương trình thuần nhất đối với sin x và cos x. Dạng 2: Phương trình đẳng cấp bậc hai, bậc ba. Dạng 3: Phương trình đối xứng. BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BẢI TẬP TỰ LUYỆN.
Tài liệu chủ đề phương trình lượng giác cơ bản
Tài liệu gồm 20 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề phương trình lượng giác cơ bản, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1. I. KIẾN THỨC TRỌNG TÂM Loại 1 : Phương trình bậc hai, bậc ba theo một hàm số lượng giác. Với phương trình 2 a kx b kx c sin sin 0 thì ta đặt t kx sin với 1 1 t quy về phương trình bậc hai: 2 a t b t c t kx x 0 sin. Với phương trình 2 a kx b kx c cos cos 0 thì ta đặt t kx cos với 1 1 t quy về phương trình bậc hai: 2 a t b t c t kx x 0 cos. Với phương trình 2 a kx b kx c tan tan 0 thì ta đặt t kx tan quy về phương trình bậc hai: 2 a t b t c t kx x 0 tan. Tương tự cho phương trình ẩn t kx cot. Chú ý: Với phương trình bậc ba theo một hàm số lượng giác thì cách giải tương tự! Loại 2 : Phương trình nhóm nhân tử chung. Với phương trình f x 0 bằng các kĩ thuật phân tích, các công thức lượng giác đã học ta nhóm được nhân tử chung và quy về dạng 0 g x g x h x h x. II. HỆ THỐNG VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Tài liệu chủ đề phương trình lượng giác sơ cấp
Tài liệu gồm 40 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề phương trình lượng giác sơ cấp, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1. I. KIẾN THỨC TRỌNG TÂM + Loại 1: Phương trình sin x = m. + Loại 2: Phương trình cos x = m. + Loại 3: Phương trình tan x = m. + Loại 4: Phương trình cot x = m. II. HỆ THỐNG VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Tài liệu chủ đề hàm số lượng giác
Tài liệu gồm 40 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề hàm số lượng giác, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1. I. KIẾN THỨC TRỌNG TÂM 1) Các hệ thức lượng giác cơ bản. 2) Tính tuần hoàn của hàm số lượng giác. 3) Tính chẵn lẻ của hàm số lượng giác. 4) Sự biến thiên và đồ thị các hàm số lượng giác. II. HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1: Tập xác định và tập giá trị của hàm số lượng giác. Dạng 2: Tính chẵn lẻ của hàm số lượng giác. Dạng 3: Chu kì của hàm số lượng giác. Dạng 4: Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác. BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BÀI TẬP TỰ LUYỆN.