Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán 2018 THPT Quốc gia lần 1 trường THPT Kim Liên - Hà Nội

Đề thi thử Toán 2018 THPT Quốc gia lần 1 trường THPT Kim Liên – Hà Nội gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, kỳ thi diễn ra vào ngày 05/01/2018, nội dung đề thi bao gồm cả chương trình Toán 11 và Toán 12. Chỉ còn khoảng hơn 5 tháng nữa kỳ thi THPT Quốc gia năm 2018 sẽ chính thức diễn ra, do vậy từ đầu năm 2018 này, các trường THPT trên toàn quốc đã bắt đầu khởi động các kế hoạch thi thử nhằm giúp các em học sinh 12 làm quen với hình thức thi, cấu trúc đề thi và nắm được các dạng toán thường gặp, cũng như các dạng toán phân loại điểm 9, 10 mới có thể xuất hiện trong đề thi chính thức. Trích dẫn đề thi thử Toán 2018 : + Ngân hàng BIDV Việt Nam đang áp dụng hình thức lãi kép với lãi suất: không kỳ hạn là 0,2%/năm, kỳ hạn 3 tháng là 4,8%/năm. Ông A đến ngân hàng BIDV gửi tiết kiệm với số tiền ban đầu là 300 triệu đồng. Nếu gửi không kỳ hạn mà ông A muốn thu về cả vốn và lãi bằng hoặc vượt quá 305 triệu đồng thì ông A phải gửi ít nhất n tháng (n ∈ N*). Hỏi nếu cùng số tiền ban đầu và cùng số tháng đó, ông A gửi tiết kiệm có kỳ hạn 3 tháng thì ông A sẽ nhận được số tiền cả vốn lẫn lãi là bao nhiêu (giả sử rằng trong suốt thời gian đó, lãi suất ngân hàng không thay đổi và nếu chưa đến kỳ hạn mà rút tiền thì số tháng dư so với kỳ hạn sẽ được tính theo lãi suất không kỳ hạn). [ads] + Việt và Nam chơi cờ. Trong một ván cờ, xác suất để Việt thắng Nam là 0,3 và Nam thắng Việt là 0,4. Hai bạn dừng chơi cờ khi có người thắng, người thua. Tính xác suất để 2 bạn dừng chơi sau 2 ván. + Trên bàn có 1 cốc nước hình trụ chứa đầy nước. Có chiều cao bằng 3 lần đường kính của đáy; một viên bi và một khối nón đều bằng thủy tinh. Biết viên bi là một khối cầu có đường kính bằng đường kính của cốc nước. Người ta từ từ thả vào cốc nước viên bi và khối nón đó (như hình vẽ) thì thấy nước trong cốc tràn ra ngoài. Tính tỉ số thể tích của lượng nước còn lại trong cốc và lượng nước ban đầu (bỏ qua bề dày của lớp thủy tinh).

Nguồn: toanmath.com

Đọc Sách

Đề thi thử TN THPT 2023 môn Toán lần 1 trường THPT Đông Hà - Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 1 trường THPT Đông Hà, tỉnh Quảng Trị (mã đề 111); kỳ thi được diễn ra vào thứ Hai ngày 17 tháng 04 năm 2023. Trích dẫn Đề thi thử TN THPT 2023 môn Toán lần 1 trường THPT Đông Hà – Quảng Trị : + Cho hình nón (N1) có đỉnh S, chiều cao h. Một hình nón (N2) có đỉnh là tâm của đáy hình nón (N1) và có đáy là một thiết diện song song với đáy của hình nón (N1) đã cho. Tính chiều cao x của khối nón (N2) để thể tích của nó lớn nhất biết 0 < x < h. + Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình bên dưới. Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (–20;20) để hàm số h(x) = |f2(x) + f(x) + m| có đúng 3 điểm cực trị? + Cho khối lăng trụ đứng ABC.A’B’C’ có AB = 3a, BC’ = 4a và BAC = 30°. Gọi M là trung điểm của cạnh BB’ và (a) là mặt phẳng đi qua M và song song với AB, BC’. Biết thiết diện của lăng trụ ABC.A’B’C’ cắt bởi mặt phẳng (a) có chu vi bằng 9a. Thể tích khối lăng trụ đã cho bằng?
Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 trường THPT Phụ Dực - Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT Quốc gia năm học 2022 – 2023 môn Toán lần 2 trường THPT Phụ Dực, tỉnh Thái Bình; đề thi có đáp án mã đề 101 102 103 104 105 106 107 108. Trích dẫn đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 trường THPT Phụ Dực – Thái Bình : + Giải bóng đá Mini cấp trường của một trường THPT, có 16 đội đăng kí tham dự trong đó có 3 đội 12A1, 12A2 và 12A3. Ban tổ chức cho bốc thăm ngẫu nhiên để chia đều 16 đội vào 4 bảng (mỗi bảng 4 đội) để đá vòng loại. Tính xác suất để 3 đội của 3 lớp 12A1, 12A2 và 12A3 nằm ở 3 bảng khác nhau. + Cho một cổ vật hình trụ có chiều cao đo được là 81cm, do bị hư hại nên khi tiến hành đo đạc lại thu được AB BC CA 50cm 70cm 80cm, với ABC thuộc đường tròn nắp trên như hình vẽ. Thể tích khối cổ vật ban đầu gần nhất với số nào sau đây? + Cho hàm số 2 3 2023 2024 fx x 3 2 7 3 10 4. Biết rằng tập hợp tất cả các giá trị thực của tham số m để hàm số 4 2 h x f x x mx 8 có số điểm cực tiểu nhiều nhất là S ab c. Giá trị của biểu thức 2 2 T a ab b abc thuộc khoảng nào sau đây?
Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GDĐT Yên Bái
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở Giáo dục và Đào tạo tỉnh Yên Bái (mã đề 001); kỳ thi được diễn ra vào ngày 11 tháng 04 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GD&ĐT Yên Bái : + Một nhóm gồm 10 học sinh trong đó có hai bạn A và B đứng ngẫu nhiên thành một hàng. Xác suất để hai bạn A và B đứng cạnh nhau là? + Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x = 1 và x = 3, biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (1 ≤ x ≤ 3) thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x và 3×2 – 2. + Trong không gian Oxyz, cho điểm A(1;2;−3) và mặt phẳng (P): 2x + 2y − z + 9 = 0. Đường thẳng d đi qua A và vuông góc với mặt phẳng (Q): 3x + 4y – 4z + 5 = 0 cắt mặt phẳng (P) tại điểm B. Điểm M nằm trong mặt phẳng (P), nhìn đoạn AB dưới góc vuông và độ dài MB lớn nhất. Tính độ dài MB.
Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 liên trường THPT - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 2 liên trường THPT trực thuộc sở GD&ĐT tỉnh Nghệ An; đề thi có đáp án tất cả các mã đề; kỳ thi được diễn ra vào chiều thứ Bảy ngày 15 tháng 04 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 liên trường THPT – Nghệ An : + Người ta sản xuất thùng phuy sắt có hình dạng là một hình trụ (có nắp đậy kín) bằng cách cán và gò các tấm thép có độ dày 1mm, biết chiều cao của thùng phuy là 876mm, đường kính ngoài của thùng phuy là 580mm và khối lượng riêng của thép là 7850kg/m3. Hỏi mỗi thùng phuy nặng khoảng bao nhiêu kg (tính gần đúng sau dấu phẩy đến 2 chữ số thập phân)? + Cho hàm số y = f(x) có đạo hàm là f'(x) = (x – a)(x − b) với a, b là hai hằng số và a < b, biết rằng f(b) = 0 và hàm số g(x) = |4×3 + (2 – 3f(a))x2 – 2f(a)x + m| (với m là tham số). Khi đó hàm số g[f(x)] có tối đa bao nhiêu điểm cực trị? + Trong không gian Oxyz, cho mặt phẳng (P): 2x + ay + bz + c = 0 chứa đường thẳng d là giao tuyến của hai mặt phẳng (A): x + y – z + 1 = 0, (B): x + y – 2z − 1 = 0. Biết rằng khoảng cách từ điểm M(1;2;1) đến mặt phẳng (P) bằng 3. Khi đó giá trị a + b + c bằng?