Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán và bài tập giới hạn có lời giải chi tiết - Nguyễn Bảo Vương

Tài liệu gồm 140 trang trình bày các dạng toán trong chương trình Đại số và Giải tích 11 chương 4 – Giới hạn, với các chủ đề: giới hạn dãy số, giới hạn hàm số và hàm số liên tục, sau mỗi phần đều có bài tập trắc nghiệm và tự luận giới hạn có lời giải chi tiết. Tài liệu được biên soạn bởi thầy Nguyễn Bảo Vương. 1. GIỚI HẠN DÃY SỐ Vấn đề 1 . Tìm giới hạn bằng định nghĩa Phương pháp: + Để chứng minh lim un = 0 ta chứng minh với mọi số a > 0 nhỏ tùy ý luôn tồn tại một số na sao cho |un| < a với mọi n > na. + Để chứng minh lim un = 1 ta chứng minh lim(un – 1) = 0. + Để chứng minh lim un = +∞ ta chứng minh với mọi số M > 0 lớn tùy ý, luôn tồn tại số tự nhiên nM sao cho un > M với mọi n > nM. + Để chứng minh lim un = -∞ ta chứng minh lim (-un) = +∞. + Một dãy số nếu có giới hạn thì giới hạn đó là duy nhất. Vấn đề 2 . Tìm giới hạn của dãy số dựa vào các định lý và các giới hạn cơ bản Phương pháp: Sử dụng các định lí về giới hạn, biến đổi đưa về các giới hạn cơ bản. + Khi tìm lim f(n)/g(n) ta thường chia cả tử và mẫu cho n^k, trong đó k là bậc lớn nhất của tử và mẫu. + Khi tìm lim [(f(n))^1/k – (g(n))^1/m] trong đó lim f(n) = lim g(n) = +∞ ta thường tách và sử dụng phương pháp nhân lượng liên hợp. 2. GIỚI HẠN CỦA HÀM SỐ Vấn đề 1 . Tìm giới hạn bằng định nghĩa Vấn đề 2 . Tìm giới hạn của hàm số + Bài toán 01: Tìm lim f(x) khi x → x0 biết xác định tại x0 + Bài toán 02. Tìm lim f(x)/g(x) khi x → x0 trong đó f(x0) = g(x0) = 0 + Bài toán 03: Tìm lim f(x)/g(x) khi x → ±∞, trong đó f(x), g(x) → ∞, dạng này ta còn gọi là dạng vô định ∞/∞ + Bài toán 04: Dạng vô định: ∞ – ∞ và 0.∞ + Bài toán 05: Dạng vô định các hàm lượng giác [ads] 3. HÀM SỐ LIÊN TỤC Vấn đề 1 . Xét tính liên tục của hàm số tại một điểm Phương pháp: + Tìm giới hạn của hàm số y = f(x) khi x → x0 và tính f(x0) + Nếu tồn tại lim f(x) khi x → x0 thì ta so sánh với lim f(x) khi x → x0 với f(x0) Vấn đề 2 . Xét tính liên tục của hàm số trên một tập Phương pháp: Sử dụng các định lí về tính liên tục của hàm đa thức, lương giác, phân thức hữu tỉ … Nếu hàm số cho dưới dạng nhiều công thức thì ta xét tính liên tục trên mỗi khoảng đã chia và tại các điểm chia của các khoảng đó. Vấn đề 3 . Chứng minh phương trình có nghiệm Phương pháp: + Để chứng minh phương trình f(x) = 0 có ít nhất một nghiệm trên D, ta chứng minh hàm số y = f(x) liên tục trên D và có hai số a, b ∈ D sao cho f(a).f(b) < 0. + Để chứng minh phương trình f(x) = 0 có k nghiệm trên D, ta chứng minh hàm số y = f(x) liên tục trên D và tồn tại k khoảng rời nhau (ai; ai+1) (i = 1, 2, …, k) nằm trong D sao cho f(ai).f(ai+1) < 0.

Nguồn: toanmath.com

Đọc Sách

Bài tập dãy số, cấp số cộng và cấp số nhân có lời giải chi tiết
Tài liệu gồm 29 trang tuyển chọn các bài tập dãy số, cấp số cộng và cấp số nhân có lời giải chi tiết (Đại số và Giải tích 11 chương 3), các bài tập được chọn lọc với nhiều dạng bài khác nhau, độ khó từ thấp đến cao. Trích dẫn tài liệu dãy số, cấp số cộng và cấp số nhân : + Chọn mệnh đề đúng trong các mệnh đề dưới đây. Cấp số nhân với: A. un = (-1/4)^n là dãy số tăng. B. un = (1/4)^n là dãy số tăng. C. un = 4^n là dãy số tăng. D. un = (-4)^n là dãy số tăng. + Cho dãy số (un): 1, x, x^2, x^3 … (với x ∈ R, x ≠ 1, x ≠ 0). Chọn mệnh đề đúng: A. (un) là cấp số nhân có un = x^n. B. (un) là cấp số nhân có u1 = 1, q = x. C. (un) không phải là cấp số nhân. D. (un) là một dãy số tăng. [ads] + Cho cấp số nhân (un) với u1 = -1, q = -1/10. Số 1/10^103 là số hạng thứ mấy của (un)? A. Số hạng thứ 103. B. Số hạng thứ 104. C. Số hạng thứ 105. D. Không là số hạng của cấp số đã cho.
Bài tập trắc nghiệm xác định số hạng thứ n của dãy số - Nguyễn Chiến
Tài liệu 16 trang với 18  bài toán trắc nghiệm xác định số hạng thứ n của dãy số có lời giải chi tiết, đây là các bài toán nâng cao trong chương dãy số. Trích dẫn tài liệu : + Cho dãy số xác định bởi: u1 = 2008 và un+1 = √(un^2 + n^2 + 2018) ∀n ≥ 1. Số hạng thứ 21 trong dãy số có giá trị gần nhất là? + Cho dãy số xác định bởi: u1 = 2 và un+1 = un + 2n – 3 ∀n ≥ 1. Số hạng thứ 2017 trong dãy số có giá trị là? + Cho dãy số xác định bởi: u1 = 2 và un = 5un-1 + 6 ∀n ≥ 2. Số hạng thứ 6 trong dãy số có giá trị là? [ads]
Bài tập dãy số và cấp số - Trần Sĩ Tùng
Tài liệu gồm 6 trang tổng hợp một số bài tập dãy số và cấp số cộng, cấp số nhân, tài liệu được biên soạn bởi thầy Trần Sĩ Tùng. I. Phương pháp qui nạp toán học Để chứng minh mệnh đề chứa biến A(n) là một mệnh đề đúng với mọi giá trị nguyên dương n, ta thực hiện như sau: · Bước 1: Kiểm tra mệnh đề đúng với n = 1 · Bước 2: Giả thiết mệnh đề đúng với số nguyên dương n = k tuỳ ý (k >= 1), chứng minh rằng mệnh đề đúng với n = k + 1 Chú ý: Nếu phải chứng minh mệnh đề A(n) là đúng với với mọi số nguyên dương n >= p thì: + Ở bước 1, ta phải kiểm tra mệnh đề đúng với n = p + Ở bước 2, ta giả thiết mệnh đề đúng với số nguyên dương bất kì n = k >= p và phải chứng minh mệnh đề đúng với n = k + 1 II. Dãy số 1. Dãy số 2. Dãy số tăng, dãy số giảm 3. Dãy số bị chặn [ads] III. Cấp số cộng 1. Định nghĩa 2. Số hạng tổng quát 3. Tính chất các số hạng 4. Tổng n số hạng đầu tiên IV. Cấp số nhân 1. Định nghĩa 2. Số hạng tổng quát 3. Tính chất các số hạng 4. Tổng n số hạng đầu tiên
Bài tập phương pháp quy nạp toán học - Lê Bá Bảo
Tài liệu gồm 10 trang hướng dẫn cách giải và tuyển chọn các bài tập phương pháp quy nạp toán học có lời giải chi tiết. I – Lý thuyết Để chứng minh một mệnh đề đúng với mọi n thuộc N* bằng phương pháp quy nạp toán học ta thực hiện các bước sau: + Bước 1: Kiểm tra mệnh đề đúng với n = 1 + Bước 2: Giả sử mệnh đề đúng với n = k >=1 + Bước 3: Chứng minh mệnh đề đúng với n = k+1 II – Các dạng bài tập + Dạng 1: Chứng minh đẳng thức – bất đẳng thức + Dạng 2: Bài toán chia hết [ads]