Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 Toán 8 năm 2020 - 2021 trường THCS Nguyễn Tri Phương - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề thi học kì 1 Toán 8 năm học 2020 – 2021 trường THCS Nguyễn Tri Phương, quận Ba Đình, thành phố Hà Nội, nhằm giúp các em ôn tập, thử sức để chuẩn bị cho kì thi HK1 Toán 8 sắp tới. Trích dẫn đề thi học kì 1 Toán 8 năm 2020 – 2021 trường THCS Nguyễn Tri Phương – Hà Nội : + Cho hình chữ nhật ABCD. Gọi O là giao điểm của AC và BD. Vẽ I là trung điểm của BC, E là điểm đối xứng với O qua I. 1) Chứng minh tứ giác BOCE là hình thoi. 2) Gọi K là giao điểm của tia CE và tia AB. Chứng minh tứ giác BDCK là hình bình hành và ba điểm D, K, I thẳng hàng. 3) DK cắt AC và BE lần lượt tại M và N: a) Chứng minh M là trung điểm của DN b) Chứng minh DM MN NK. 4) Tìm điều kiện của hình chữ nhật ABCD để tứ giác BOCE là hình vuông. + Cho biểu thức 5 3 x A x và 2 2 2 3 9 3 9 x x x B x x với x 3. 1) Tính giá trị của biểu thức A khi x 2. 2) Rút gọn biểu thức B. 3) Cho P B A. Tìm giá trị nguyên dương của x để P có giá trị nguyên. + Cho x; y; z đôi một khác nhau thỏa mãn: 2 2 2 2020 x y z x y y z z x. Tính giá trị biểu thức: 2 2 2 2014.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 1 Toán 8 năm 2022 - 2023 trường THPT chuyên Hà Nội - Amsterdam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra cuối học kỳ 1 môn Toán 8 năm học 2022 – 2023 trường THPT chuyên Hà Nội – Amsterdam; đề thi được biên soạn theo cấu trúc 100% tự luận, thời gian học sinh làm bài thi là 90 phút; kỳ thi được diễn ra vào sáng thứ Tư ngày 14 tháng 12 năm 2022. Trích dẫn Đề thi học kỳ 1 Toán 8 năm 2022 – 2023 trường THPT chuyên Hà Nội – Amsterdam : + Bác An muốn tính khoảng cách giữa hai vị trí P, Q ở hai bên bờ cái ao cá. Để làm được điều đó, bác An đã chọn ba vị trí A, B, C, thực hiện đo đạc và vẽ mô phỏng như hình vẽ dưới. Em hãy giúp bác An tính khoảng cách giữa hai điểm P và Q. + Cho hình chữ nhật ABCD (AB > 2BC), trên cạnh AB lấy M sao cho BC = AM, trên tia CB lấy N sao cho CN = BM, CM cắt AN tại P, trên CD lấy điểm E sao cho CE = CB. 1) Chứng minh rằng tứ giác AMCE là một hình bình hành. 2) Chứng minh rằng các tam giác ADE và ECN bằng nhau. 3) Đường thẳng qua A vuông góc với AE cắt đường thẳng qua N vuông góc với NE tại điểm F. Chứng minh rằng tứ giác AENF là hình vuông. 4) Gọi K là giao điểm của EN với PC, L là giao điểm của EF với AN. Tính tỷ số diện tích của hai tam giác NKL và NEP. + Với các số thực không âm a, b thỏa mãn a + b = 2, tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thúc P = (a + 1)(2b + 1).