Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 1 Toán 10 năm 2018 - 2019 trường THPT chuyên ĐHSP - Hà Nội

Đề thi học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT chuyên ĐHSP – Hà Nội mã đề 209 gồm 2 trang được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 12 câu, chiếm 3 điểm, phần tự luận gồm 4 câu, chiếm 7 điểm, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 03 tháng 12 năm 2018, đề nhằm kiếm tra, đánh giá năng lực học Toán của học sinh khối 10 trong giai đoạn học kỳ 1 của năm học 2018 – 2019. Trích dẫn đề thi học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT chuyên ĐHSP – Hà Nội : + Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây? + Cho hình bình hành ABCD, với AB = 2, AD = 1, góc BAD = 60°. Tính các tích vô hướng AB.AD, BA.BC và độ dài hai đường chéo AC, BD của hình bình hành. + Cho hàm số y = x^2 – 4x + 3. Xác định khoảng đồng biến, khoảng nghịch biến và lập bảng biến thiên của hàm số trên. Vẽ parabol (P): y = x^2 – 4x + 3 (nêu rõ trục đối xứng và toạ độ đỉnh của parabol).

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Phú Lâm - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Phú Lâm, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Phú Lâm – TP HCM : + Trong mặt phẳng (Oxy) cho ba điểm A(-1;2), B(-1;-1), C(4;-1). a) Chứng minh rằng tam giác ABC vuông tại B. b) Tính diện tích của tam giác ABC. c) Tìm tọa độ trọng tâm G của tam giác ABC. + Cho phương trình mx^2 – (2m + 1)x + m – 4 = 0. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 sao cho x1^2 + x2^2 = 15. + Cho hình vuông ABCD có cạnh bằng 2a. Hãy tính AC.AD.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Nguyễn Thị Minh Khai - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Giải các phương trình và hệ phương trình sau. + Tìm giá trị tham số m sao cho phương trình 9m^2.x – 1 = x – 3m có nghiệm tùy ý. + Tìm giá trị nhỏ nhất của hàm số y = 9x + (3x + 1)/(x – 1) với x > 1.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Tân Phong - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Tân Phong, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Tân Phong – TP HCM : + Cho ∆ABC có trung tuyến CM. Trên đường thẳng AC lấy điểm N sao cho NA = 2NC. Gọi K là trung điểm MN. Phân tích vecto AK theo AB, AC. + Trong mặt phẳng Oxy cho E(-2;-3); F(3;7); G(0;3); H(-4;-5), chứng minh rằng hai đường thẳng EF và GH song song với nhau. + Trong mặt phẳng Oxy, cho tam giác ∆ABC có A(−1;2); B(3;7); C(0;3). Tìm D sao cho ABCD là hình bình hành.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Lương Thế Vinh - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Lương Thế Vinh, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Lương Thế Vinh – TP HCM : + Một người ném một quả bóng với quỹ đạo là một phần đường Parabol (P): y = ax2 + bx + c (a khác 0). Chọn hệ trục tọa độ Oxy sao cho gốc tọa độ O tại vị trí chân người ném bóng, trục Ox nằm trên mặt đất (x, y được tính bằng mét) (xem hình bên). Quả bóng được ném lên từ độ cao 2,5 mét so với mặt đất, Parabol có đỉnh I(2;9/2). Hỏi vị trí bóng chạm mặt đất cách chân người đó bao nhiêu mét? + Cho tam giác ABC có AB = 5; AC = 8, góc A = 60 độ. a) Tính độ dài cạnh BC, trung tuyến AM. b) Trên cạnh BC lấy điểm N sao cho BN = 3, tính độ dài đoạn thẳng AN. + Giải các phương trình và hệ phương trình sau.