Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 12 lần 1 năm 2019 - 2020 trường Thạch Thành 3 - Thanh Hóa

Ngày … tháng 11 năm 2019, trường THPT Thạch Thành 3 – Thanh Hóa tổ chức kỳ thi khảo sát chất lượng môn Toán lần thứ nhất đối với học sinh khối 12 của nhà trường trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề khảo sát Toán 12 lần 1 năm học 2019 – 2020 trường THPT Thạch Thành 3 – Thanh Hóa có mã đề 001, đề gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh có 90 phút để làm bài KSCL Toán 12. Trích dẫn đề khảo sát Toán 12 lần 1 năm 2019 – 2020 trường Thạch Thành 3 – Thanh Hóa : + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 60°. Gọi M là điểm đối xứng với C qua D, N là trung điểm của SC, mặt phẳng (BMN) chia khối chóp S.ABCD thành hai phần. Gọi (H1) là phần đa diện chứa điểm S có thể tích V1, (H2) là phần đa diện còn lại có thể tích V2. Tính tỉ số thể tích V1/V2. + Một hộp có chứa 3 viên bi đỏ, 2 viên bi xanh và n viên bi vàng (các viên bi kích thước như nhau, n là số nguyên dương). Lấy ngẫu nhiên 3 viên bi từ hộp. Biết xác suất để trong ba viên bi lấy được có đủ 3 màu là 9/28. Tính xác suất P để trong 3 viên bi lấy được có ít nhất một viên bi xanh. [ads] + Cho phương trình: (cos4x – cos2x + 2(sinx)^2)/(cosx + sinx) = 0. Tính diện tích đa giác có các đỉnh là các điểm biểu diễn các nghiệm của phương trình trên đường tròn lượng giác. + Một công ty muốn làm một đường ống dẫn dầu từ kho A ở trên bờ biển đến một vị trí B trên một hòn đảo. Hòn đảo cách bờ biển 6km. Gọi C là điểm trên bờ sao cho BC vuông góc với bờ biển. Khoảng cách từ A đến C là 9km. Người ta cần xác định một vị trí D trên AC để lắp ống dẫn theo đường gấp khúc ADB. Tính khoảng cách AD để số tiền chi phí thấp nhất, biết rằng giá để lắp đặt mỗi km đường ống trên bờ là 100 000 000 đồng và dưới nước là 260 000 000 đồng. + Người ta muốn xây một cái bể hình hộp đứng có thể tích V = 18 (m3), biết đáy bể là hình chữ nhật có chiều dài gấp 3 lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL ôn thi THPT Quốc gia 2019 môn Toán trường THPT chuyên Vĩnh Phúc lần 1
Đề KSCL ôn thi THPT Quốc gia 2019 môn Toán trường THPT chuyên Vĩnh Phúc lần 1 mã đề 789 gồm 6 trang được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, thí sinh làm bài trong 90 phút, đề nhằm giúp học sinh lớp 12 ôn tập từ sớm để từng bước chuẩn bị cho kỳ thi THPTQG 2019 môn Toán, đề thi có đáp án các mã đề 123, 234, 345, 456, 567, 678, 789 và có lời giải chi tiết. Trích dẫn đề KSCL ôn thi THPT Quốc gia 2019 môn Toán trường THPT chuyên Vĩnh Phúc lần 1 : + Một xe buýt của hãng xe A có sức chứa tối đa là 50 hành khách. Nếu một chuyến xe buýt chở x hành khách thì giá tiền cho mỗi hành khách là 20(3 – x/40)^2 (nghìn đồng). Khẳng định nào sau đây là khẳng định đúng? A. Một chuyến xe buýt thu được số tiền nhiều nhất khi có 50 hành khách. B. Một chuyến xe buýt thu được số tiền nhiều nhất khi có 45 hành khách. C. Một chuyến xe buýt thu được số tiền nhiều nhất bằng 2.700.000 (đồng). D. Một chuyến xe buýt thu được số tiền nhiều nhất bằng 3.200.000 (đồng). [ads] + Có 30 tấm thẻ được đánh số thứ tự từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm . Tính xác suất để lấy được 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong có có đúng một tấm thẻ mang số chia hết cho 10. + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, AC = a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính khoảng cách giữa hai đường thẳng AD và SC, biết góc giữa đường thẳng SD và mặt đáy bằng 60°.
Đề KSCL đầu năm 2018 - 2019 môn Toán 12 trường THPT Lê Văn Thịnh - Bắc Ninh
Đề KSCL đầu năm 2018 – 2019 môn Toán 12 trường THPT Lê Văn Thịnh – Bắc Ninh mã đề 132 được biên soạn theo hình thức tương tự như đề thi THPT Quốc gia với 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong thời gian 90 phút, kỳ thi được tổ chức vào ngày 16/09/2018. Nội dung kiểm tra hướng đến gồm: nội dung chương trình Toán 11, chủ đề khảo sát và đồ thị hàm số, khối đa diện và thể tích. Đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL đầu năm 2018 – 2019 môn Toán 12 trường THPT Lê Văn Thịnh – Bắc Ninh : + Cho hàm số y = f(x) có đạo hàm trên đoạn [a;b]. Ta xét các khẳng định sau: (1) Nếu hàm số y = f(x) đạt cực đại tại điểm x0 ∈ (a;b) thì f(x0) là giá trị lớn nhất của f(x) trên [a;b]. (2) Nếu hàm số y = f(x) đạt cực đại tại điểm x0 ∈ (a;b) thì f(x0) là giá trị nhỏ nhất của f(x) trên [a;b]. (3) Nếu hàm số f(x) đạt cực đại tại điểm x0 và đạt cực tiểu tại điểm x1 (x0, x1 ∈ (a;b)) thì ta luôn có f(x0) > f(x1). Số khẳng định đúng là? [ads] + Cho hai đường thẳng cố định a và b chéo nhau. Gọi AB là đoạn vuông góc chung của a và b (A thuộc a, B thuộc b). Trên a lấy điểm M (khác A), trên b lấy điểm N (khác B ) sao cho AM = x, BN = y, x + y = 8. Biết AB = 6, góc giữa hai đường thẳng a và b bằng 60 độ. Khi thể tích khối tứ diện ABNM đạt giá trị lớn nhất hãy tính độ dài đoạn MN (trong trường hợp MN = 8). + Cho hàm số y = (x + 1)/(2 – x). Khẳng định nào sau đây đúng? A. Hàm số đã cho đồng biến trên từng khoảng xác định của nó. B. Hàm số đã cho đồng biến trên khoảng (-∞;2) ∪ (2;+∞). C. Hàm số đã cho đồng biến trên R. D. Hàm số đã cho nghịch biến trên từng khoảng xác định của nó.
Đề KSCL Toán 12 năm 2018 trường THPT số 2 An Nhơn - Bình Định lần 3
Đề KSCL Toán 12 năm 2018 trường THPT số 2 An Nhơn – Bình Định lần 3 mã đề 209 nằm trong chuyên mục đề thi thử môn Toán hướng đến kỳ thi THPT Quốc gia 2018, đề 07 trang với 50 câu hỏi trắc nghiệm khách quan, thí sinh có 90 phút để làm bài thi. Trích dẫn đề KSCL Toán 12 năm 2018 trường THPT số 2 An Nhơn – Bình Định lần 3 : + Người dân Bình Định truyền nhau câu ca dao: “Muốn ăn bánh ít lá gai – Lấy chồng Bình Định sợ dài đường đi”. Muốn ăn bánh ít lá gai thì bạn phải tìm về với xứ Tuy Phước – Bình Định. Nơi đây nổi tiếng trứ danh với món bánh nghe cái tên khá lạ lẫm “Bánh ít lá gai” và hương vị làm say đắm lòng người. Trong một lô sản phẩm trưng bày bánh ít lá gai ở hội chợ ẩm thực huyện Tuy Phước gồm 40 chiếc bánh, 25 chiếc bánh có nhiều hạt mè và 15 chiếc bánh có ít hạt mè, một du khách muốn chọn 5 chiếc bánh, tính xác xuất để du khách đó chọn được ít nhất 2 chiếc bánh có nhiều hạt mè. (các chiếc bánh có khả năng được chọn là như nhau). [ads] + Du khách ghé thăm Bình Định không thể bỏ qua địa danh Tháp Bánh Ít nổi tiếng, nằm ở vị trí thấp nhất là tháp cổng cách tháp chính 100 mét. Tháp cổng được trang trí khá đơn giản nhưng lại trông vô cùng khỏe khoắn, vững chãi. Tháp có hai cửa nằm cùng một trục với tháp chính, hướng Đông – Tây để tạo nên sự hòa hợp về mặt kiến trúc và có hình dáng là một cung Parabol, hai cửa cách nhau 8 mét, có chiều cao 4 mét, lối đi rộng 1 mét thông hai cửa với nhau. Hãy tính thể tích phần không gian lối đi giới hạn giữa hai cửa. + Bình Định có câu ca dao: “Cưới nàng đôi nón Gò Găng – Xấp lãnh An Thái một khăn trầu nguồn”. Nói đến câu ca dao này là nói đến một làng nghề truyền thống có hàng trăm năm tuổi của thị xã An Nhơn, tỉnh Bình Định – làng nghề làm nón lá Gò Găng. Nhân kỷ niệm 10 năm được công nhận thị xã, thị xã An Nhơn lên kế hoạch làm các mô hình biểu tượng làng nghề truyền thống trên địa bàn, trong đó có mô hình chiếc nón lá Gò Găng. Chiếc nón có bán kính đáy 1 mét và chiều cao 1,5 mét; khung thép dùng làm đường tròn đáy và 10 đường nối từ đỉnh của nón đến đường tròn đáy có giá thành 40.000 đồng/mét; lá của cây lá nón Licuala Fatoua Becc dùng để làm mặt nón có giá thành 20.000 đồng/mét vuông. Hỏi kinh phí để làm chiếc nón biểu tượng này là bao nhiêu? (bỏ qua diện tích các mép nối và làm tròn đến nghìn đồng).
Đề KSCL Toán 12 năm 2017 - 2018 trường Sào Nam - Quảng Nam lần 3
Đề KSCL Toán 12 năm 2017 – 2018 trường Sào Nam – Quảng Nam lần 3 nằm trong chuyên mục đề thi thử môn Toán hướng đến kỳ thi THPT Quốc gia năm 2018, đề gồm 05 trang với 50 câu hỏi trắc nghiệm, thí sinh làm bài trong thời gian 90 phút. Trích dẫn đề KSCL Toán 12 năm 2017 – 2018 trường Sào Nam – Quảng Nam lần 3 : + Gọi X là tập hợp tất cả các số tự nhiên có 8 chữ số lập từ các chữ số 1, 2, 3, 4, 5, 6. Chọn ngẫu nhiên một số trong tập hợp X. Xác suất để số chọn ra có đúng ba chữ số 1, các chữ số còn lại đôi một khác nhau và hai chữ số chẵn không đứng cạnh nhau bằng. [ads] + Cho hình trụ có trục OO’ và có bán kính đáy bằng 4. Một mặt phẳng song song với trục OO’ và cách OO’ một khoảng bằng 2 cắt hình trụ theo thiết diện là một hình vuông. Diện tích xung quanh của hình trụ đã cho bằng? + Cho số phức z thỏa mãn |z – 3 + 4i| = 5. Biết rằng tập hợp điểm trong mặt phẳng tọa độ biểu diễn các số phức w = 2z + 4 – i là đường tròn có tâm I(a;b), bán kính R. Tổng a + b + R bằng?