Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

250 bài tập trắc nghiệm chủ đề tổ hợp - xác suất có đáp án và lời giải chi tiết

Tài liệu gồm 68 trang tuyển tập 250 bài tập trắc nghiệm chủ đề tổ hợp – xác suất có đáp án và lời giải chi tiết. Trích dẫn tài liệu : + Một hội đồng gồm 5 nam và 4 nữ được tuyển vào một ban quản trị gồm 4 người, biết rằng ban quản trị phải có ít nhất một nam và một nữ. Hỏi có bao nhiêu cách tuyển chọn? Đáp số của bài toán là: A. 240. B. 260. C. 126. D. Kết quả khác Hướng dẫn giải Chọn D Một hội đồng gồm 5 nam và 4 nữ tổng cộng có 9 người. Chọn 4 người bất kì từ 9 người vào ban quản trị có 9C4 cách. Chọn 4 nam vào ban quản trị có 5C4 cách. Chọn 4 nữ vào ban quản trị có 4C4 cách. + Trên mặt phẳng cho bốn điểm phân biệt A, B, C, D trong đó không có bất kì ba điểm nào thẳng hàng. Từ các điểm đã cho có thể thành lập được bao nhiêu tam giác? A. 6 tam giác B. 12 tam giác C. 10 tam giác D. 4 tam giác [ads] Hướng dẫn giải Chọn D Mỗi cách chọn 3 điểm từ 4 điểm không thẳng hàng để lập thành một tam giác là một tổ hợp chập 3 của 4 phần từ. Vậy có 4C3 = 4 tam giác. + Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau lấy từ các số 0, 1, 2, 3, 4, 5? A. 60 B. 80 C. 240 D. 600 Hướng dẫn giải Chọn D Do chữ số đầu tiên phải khác 0 nên chữ số đầu có 5 cách chọn, 4 chữ số còn lại được thành lập từ 5 chữ số trừ chữ số đã chọn nên có 5A4 = 120 cách chọn. Vậy có tất cả 5.120 = 600 số.

Nguồn: toanmath.com

Đọc Sách

Bài tập trắc nghiệm xác định số hạng thứ n của dãy số - Nguyễn Chiến
Tài liệu 16 trang với 18  bài toán trắc nghiệm xác định số hạng thứ n của dãy số có lời giải chi tiết, đây là các bài toán nâng cao trong chương dãy số. Trích dẫn tài liệu : + Cho dãy số xác định bởi: u1 = 2008 và un+1 = √(un^2 + n^2 + 2018) ∀n ≥ 1. Số hạng thứ 21 trong dãy số có giá trị gần nhất là? + Cho dãy số xác định bởi: u1 = 2 và un+1 = un + 2n – 3 ∀n ≥ 1. Số hạng thứ 2017 trong dãy số có giá trị là? + Cho dãy số xác định bởi: u1 = 2 và un = 5un-1 + 6 ∀n ≥ 2. Số hạng thứ 6 trong dãy số có giá trị là? [ads]
Bài tập dãy số và cấp số - Trần Sĩ Tùng
Tài liệu gồm 6 trang tổng hợp một số bài tập dãy số và cấp số cộng, cấp số nhân, tài liệu được biên soạn bởi thầy Trần Sĩ Tùng. I. Phương pháp qui nạp toán học Để chứng minh mệnh đề chứa biến A(n) là một mệnh đề đúng với mọi giá trị nguyên dương n, ta thực hiện như sau: · Bước 1: Kiểm tra mệnh đề đúng với n = 1 · Bước 2: Giả thiết mệnh đề đúng với số nguyên dương n = k tuỳ ý (k >= 1), chứng minh rằng mệnh đề đúng với n = k + 1 Chú ý: Nếu phải chứng minh mệnh đề A(n) là đúng với với mọi số nguyên dương n >= p thì: + Ở bước 1, ta phải kiểm tra mệnh đề đúng với n = p + Ở bước 2, ta giả thiết mệnh đề đúng với số nguyên dương bất kì n = k >= p và phải chứng minh mệnh đề đúng với n = k + 1 II. Dãy số 1. Dãy số 2. Dãy số tăng, dãy số giảm 3. Dãy số bị chặn [ads] III. Cấp số cộng 1. Định nghĩa 2. Số hạng tổng quát 3. Tính chất các số hạng 4. Tổng n số hạng đầu tiên IV. Cấp số nhân 1. Định nghĩa 2. Số hạng tổng quát 3. Tính chất các số hạng 4. Tổng n số hạng đầu tiên
Bài tập phương pháp quy nạp toán học - Lê Bá Bảo
Tài liệu gồm 10 trang hướng dẫn cách giải và tuyển chọn các bài tập phương pháp quy nạp toán học có lời giải chi tiết. I – Lý thuyết Để chứng minh một mệnh đề đúng với mọi n thuộc N* bằng phương pháp quy nạp toán học ta thực hiện các bước sau: + Bước 1: Kiểm tra mệnh đề đúng với n = 1 + Bước 2: Giả sử mệnh đề đúng với n = k >=1 + Bước 3: Chứng minh mệnh đề đúng với n = k+1 II – Các dạng bài tập + Dạng 1: Chứng minh đẳng thức – bất đẳng thức + Dạng 2: Bài toán chia hết [ads]
30 bài tập cấp số cộng và cấp số nhân nâng cao - Nguyễn Đình Sỹ
Tài liệu gồm 13 trang tuyển chọn 30 bài tập cấp số cộng và cấp số nhân nâng cao do tác giả Nguyễn Định Sĩ biên soạn. Trích một số bài toán trong tài liệu : 1. Số hạng thứ 2 và số hạng thứ 7 của một cấp số cộng có tổng bằng 92, số hạng thứ tư và số hạng thứ 11 có tổng bằng 71 . Tìm 4 số hạng đó ? 2. Người ta trồng 3003 cây theo hình một tam giác như sau: hàng thứ nhất có 1 cây, hàng thứ hai có 2 cây, hàng thứ ba có 3 cây, v.v… Hỏi có bao nhiêu hàng ? 3. Tìm bốn góc của một tứ giác, biết các góc đó lập thành một cấp số nhận và góc cuối bằng 9 lần góc thứ 2 ? [ads] Bạn đọc có thể tham khảo thêm tài liệu Hướng dẫn giải các dạng toán dãy số, cấp số cộng và cấp số nhân – Đặng Việt Đông trong đó tuyển chọn nhiều bài toán về dãy số, cấp số cộng và cấp số nhân từ cơ bản đến nâng cao với đầy đủ các dạng toán, có lời giải chi tiết.