Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải bài toán khối đa diện bằng sơ đồ tư duy - Ngụy Như Thái

Tài liệu gồm 46 trang hướng dẫn phương pháp giải toán khối đa diện bằng sơ đồ tư duy, đây là sáng kiến kinh nghiệm của thầy Ngụy Như Thái (Giáo viên trường THPT An Phước). Thực tế giảng dạy cho thấy môn Toán học trong trường phổ thông là một trong những môn học khó, phần lớn các em học môn Toán rất yếu đặc biệt là hình học không gian, nếu không có những bài giảng và phương pháp dạy môn Hình học phù hợp đối với thế hệ học sinh thì dễ làm cho học sinh thụ động trong việc tiếp thu, cảm nhận. Đã có hiện tượng một số bộ phận học sinh không muốn học Hình học, ngày càng xa rời với giá trị thực tiễn của Hình học. Nhiều giáo viên chưa quan tâm đúng mức đối tượng giáo dục, chưa đặt ra cho mình nhiệm vụ và trách nhiệm nghiên cứu, hiện tượng dùng đồng loạt cùng một cách dạy, một bài giảng cho nhiều lớp, nhiều thế hệ học trò vẫn còn nhiều. Do đó phương pháp ít có tiến bộ mà người giáo viên đã trở thành người cảm nhận, truyền thụ tri thức một chiều, còn học sinh không chủ động trong quá trình lĩnh hội tri thức – kiến thức Hình học làm cho học sinh không thích học môn Hình học. Xuất phát từ mục đích dạy – học phát huy tính tích cực chủ động sáng tạo của học sinh nhằm giúp các em xây dựng các kiến thức, kỹ năng, thái độ học tập cần thiết, kỹ năng tư duy, tổng kết, hệ thống lại những kiến thức, vấn đề cơ bản vừa mới lĩnh hội giúp các em củng cố bước đầu, khắc sâu trọng tâm bài học, thì sơ đồ tư duy là một biểu đồ được sử dụng để thể hiện từ ngữ, ý tưởng, nhiệm vụ hay các mục được liên kết và sắp xếp tỏa tròn quanh từ khóa hay ý trung tâm. Sơ đồ tư duy là một phương pháp đồ họa thể hiện ý tưởng và khái niệm trong các bài học mà giáo viên cần truyền đạt, làm rõ các chủ đề qua đó giúp các em hiểu rõ hơn và nắm vững kiến thức một cách có hệ thống. [ads] Để cho học sinh có hứng thú trong học tập bộ môn Hình học hơn, tôi có một ý tưởng là: Dùng sơ đồ tư duy hệ thống kiến thức chương 1 – Thể tích khối đa diện –Hình học 12 với mong muốn thay đổi cách giảng dạy truyền thụ tri thức một chiều sang cách tiếp cận kiến tạo kiến thức và suy nghĩ. Ý tưởng là sơ đồ tư duy được xây dựng theo quá trình từng bước khi người dạy và người học tương tác với nhau. Vì đây là một hoạt động vừa mang tính phân tích vừa mang tính nghệ thuật nó làm cho học sinh gợi nhớ các kiến thức vừa mới học hoặc đã được học từ trước. Để thực hiện được điều như trên, bản thân tôi xác định phải luôn bám sát các nguồn tư liệu như: chuẩn kiến thức, kĩ năng; sách giáo khoa; sách giáo viên và các sách tham khảo khác. Ngoài ra còn luôn chuẩn bị một hệ thống câu hỏi và bài tập dựa trên mục tiêu của từng bài, từng chương cụ thể, giúp học sinh định hướng và nắm được kiến thức trọng tâm bài học. Thông qua đó học sinh nắm vững kiến thức cũ, lĩnh hội kiến thức mới nhanh hơn.

Nguồn: toanmath.com

Đọc Sách

Hình không gian thể tích từ cơ bản đến nâng cao - Nguyễn Tiến Đạt
Tài liệu gồm 42 trang tóm tắt lý thuyết, công thức tính và hướng dẫn giải các dạng toán về thể tích của khối đa diện. Tài liệu phù hợp để các học sinh bị “mất gốc” ôn lại kỹ năng giải toán hình học không gian. Nội dung tài liệu gồm: ÔN TẬP 1: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 9 – 10 1. Hệ thức lượng trong tam giác vuông 2. Hệ thức lượng trong tam giác thường 3. Các công thức tính diện tích ÔN TẬP 2: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 11 A. QUAN HỆ SONG SONG §1. ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG §2. HAI MẶT PHẲNG SONG SONG B. QUAN HỆ VUÔNG GÓC §1. ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG §2. HAI MẶT PHẲNG VUÔNG GÓC §3. KHOẢNG CÁCH 1. Khoảng cách từ 1 điểm tới 1 đường thẳng, đến 1 mặt phẳng 2. Khoảng cách giữa đường thẳng và mặt phẳng song song 3. Khoảng cách giữa hai mặt phẳng song song 4. Khoảng cách giữa hai đường thẳng chéo nhau [ads] §4.GÓC 1. Góc giữa hai đường thẳng a và b 2. Góc giữa đường thẳng a không vuông góc với mặt phẳng (P) 3. Góc giữa hai mặt phẳng 4. Diện tích hình chiếu ÔN TẬP 3: KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 12 A. CÁC CÔNG THỨC THỂ TÍCH CỦA KHỐI ĐA DIỆN 1. Thể tích khối lăng trụ: 2. Thể tích khối chóp: 3. Tỉ số thể tích tứ diện: B. PHÂN DẠNG BÀI TẬP LOẠI 1: THỂ TÍCH LĂNG TRỤ 1. Dạng 1: Khối lăng trụ đứng có chiều cao hay cạnh đáy 2. Dạng 2: Lăng trụ đứng có góc giữa đường thẳng và mặt phẳng 3. Dạng 3: Lăng trụ đứng có góc giữa hai mặt phẳng 4. Dạng 4: Khối lăng trụ xiên LOẠI 2: THỂ TÍCH KHỐI CHÓP Một số hình chóp đặc biệt: + Hình chóp tam giác đều + Hình chóp tứ giác đều + Hình chóp có một cạnh bên vuông góc với đáy 1. Dạng 1: Khối chóp có cạnh bên vuông góc với đáy 2. Dạng 2: Khối chóp có một mặt bên vuông góc với đáy 3. Dạng 3: Khối chóp đều 4. Dạng 4: Khối chóp và phương pháp tỉ số thể tích
Phân loại dạng và phương pháp giải nhanh hình không gian - Nguyễn Vũ Minh, Lê Thị Phượng (Tập 2)
Tài liệu gồm 60 trang, phân loại các dạng bài tập và phương pháp giải nhanh các bài toán về hình lăng trụ. Nội dung tài liệu gồm: Lý thuyết cơ bản và các công thức tính a. Hình lăng trụ đứng Hình lăng trụ đứng là hình lăng trụ có cạnh bên vuông góc với đáy. Các mặt bên của hình lăng trụ đứng là hình chữ nhật và vuông góc với mặt đáy. b. Hình lăng trụ đều: Hình lăng tru đều là hình lăng trụ đứng có đáy là đa giác đều. Các mặt bên của hình lăng trụ đều là những hình chữ nhật bằng nhau và vuông góc với mặt đáy. [ads] c. Hình hộp đứng: Hình hộp đứng là hình lăng trụ đứng có đáy là hình bình hành. Trong hình hộp đứng 4 mặt bên đều là hình chữ nhật. d. Hình hộp chữ nhật Hình hộp chữ nhật là hình hộp đứng có đáy là hình chữ nhật. Tất cả 6 mặt của hình hộp chữ nhật đều là hình chữ nhật. Ví dụ và bài tập trắc nghiệm Bài tập trích từ các đề thi có giải Một số bài TEST thể tích chóp – lăng trụ sưu tầm
Chuyên đề khối đa diện - Trần Quốc Nghĩa
Tài liệu gồm 78 trang bao gồm lý thuyết cần nắm, hướng dẫn giải các dạng toán và bài tập trắc nghiệm có đáp án chuyên đề khối đa diện. – Vấn đề 1. Kiến thức cần nhớ – Vấn đề 2. Khối đa diện – Vấn đề 3. Đa diện lồi, đa diện đều – Vấn đề 4. Thể tích khối đa diện + Hình 1. Hình chóp S.ABCD, có đáy ABCD là hình chữ nhật (hoặc hình vuông) và SA vuông góc với đáy + Hình 2. Hình chóp S.ABCD, có đáy ABCD là hình thang vuông tại A và B và SA vuông góc với đáy + Hình 3. Hình chóp tứ giác đều S.ABCD + Hình 4. Hình chóp S.ABC, có sa vuông góc với đáy (ABC) [ads] + Hình 6a. Hình chóp S.ABC có một mặt bên (SAB) vuông góc với đáy (ABCD) H6a.1 – Góc giữa cạnh bên và mặt đáy H6a.2 – Góc giữa mặt bên và mặt đáy + Hình 6b. Hình chóp S.ABCD có một mặt bên (SAB) vuông góc với đáy (ABCD) và ABCD là hình chữ nhật hoặc hình vuông H6b.1 – Góc giữa cạnh bên và mặt đáy H6b.2 – Góc giữa mặt bên và mặt đáy + Hình 7. Hình lăng trụ Bài tập tổng hợp Đáp án và giải trắc nghiệm
Phân loại dạng và phương pháp giải nhanh hình không gian - Nguyễn Vũ Minh (Tập 1)
Tài liệu gồm 77 trang, phân loại các dạng bài tập và phương pháp giải nhanh các bài toán về hình chóp. Nội dung gồm: + Tóm tắt lý thuyết cơ bản + Phân dạng bài tập theo dạng hình + Bài tập minh họa có lời giải chi tiết + Bài tập trắc nghiệm tự luyện [ads] Bạn đọc có thể xem tiếp tập 2 tại đây: Phân loại dạng và phương pháp giải nhanh hình không gian – Nguyễn Vũ Minh, Lê Thị Phượng (Tập 2)