Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 9 cấp huyện năm 2023 - 2024 phòng GDĐT Tân Uyên - Lai Châu

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Tân Uyên, tỉnh Lai Châu; kỳ thi được diễn ra vào thứ Sáu ngày 26 tháng 01 năm 2024. Trích dẫn Đề thi HSG Toán 9 cấp huyện năm 2023 – 2024 phòng GD&ĐT Tân Uyên – Lai Châu : + Tìm nghiệm nguyên x, y của phương trình (x − y)(2x + y + 1) + 9y = 22. + Cho góc xOy có số đo bằng 60°. Đường tròn có tâm K nằm trong góc xOy tiếp xúc với tia Ox tại M và tiếp xúc với tia Oy tại N. Trên tia Ox lấy điểm P sao cho OP = 3OM. Tiếp tuyến của đường tròn tâm K đi qua P và cắt tia Oy tại Q (Q khác O). Đường thẳng PK cắt đường thẳng MN ở E. Đường thẳng QK cắt đường thẳng MN ở F. a) Chứng minh OK vuông góc với MN. b) Chứng minh ME.PQ = KQ.PE. + Cho x, y, z là các số dương thỏa mãn x + y + z = 2024. Tìm giá trị lớn nhất của biểu thức A.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT thành phố Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Lai Châu, tỉnh Lai Châu.
Đề HSG Toán 9 năm 2023 - 2024 phòng GDĐT Phan Rang - Tháp Chàm - Ninh Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp thành phố năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND thành phố Phan Rang – Tháp Chàm, tỉnh Ninh Thuận; kỳ thi được diễn ra vào ngày 21 tháng 01 năm 2024. Trích dẫn Đề HSG Toán 9 năm 2023 – 2024 phòng GD&ĐT Phan Rang – Tháp Chàm – Ninh Thuận : + Tìm các cặp số nguyên dương (x;y) thỏa mãn: 5xy + 3x + y = 9. + Chuẩn bị đón xuân Giáp Thìn 2024, những nghệ sĩ ở thành phố Phan Rang – Tháp Chàm trang trí một hình lục giác đều bằng cách nối hai đỉnh lục giác với nhau bởi một đoạn thẳng và tô đoạn thẳng đó bởi một trong hai màu xanh hoặc đỏ. Biết rằng ba đỉnh nào của lục giác cũng được nối với nhau tạo thành một tam giác, chứng minh rằng bao giờ cũng tồn tại một tam giác có ba cạnh cùng màu. + Cho đường tròn (O) tâm O và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (O), (A là tiếp điểm). Vẽ đường kính AB của đường tròn (O), gọi C là giao điểm MB với đường tròn (O). Đường thẳng qua C vuông góc với AM cắt MA, MO lần lượt tại D, E. a) Chứng minh CB.CM = AD.AM. b) Chứng minh E là trung điểm của CD. c) Gọi I là giao điểm của AC và BD. Chứng minh ba điểm M, E, I thẳng hàng.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT TP Cao Lãnh - Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp thành phố năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Cao Lãnh, tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 17 tháng 12 năm 2023. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT TP Cao Lãnh – Đồng Tháp : + Một cửa hàng bán quà lưu niệm trên địa bàn Thành phố Cao Lãnh mua một số lượng biểu tượng Bé Sen hết 480000 đồng. Cửa hàng bán 2 Bé Sen với giá bằng phân nửa giá mua, bán những Bé Sen còn lại được lãi 8000 đồng mỗi Bé Sen. Tiền lãi tổng cộng là 72000 đồng. Tính số lượng Bé Sen mà cửa hàng đó đã mua. + Cho hàm số (d): y = (m – 2)x + m. Tìm giá trị của m biết hàm số đồng biến và đồ thị (d) cắt trục tung tại điểm M(0;9). + Cho tam giác ABC nhọn và một điểm P thuộc miền trong tam giác. Gọi D, E, F theo thứ tự là hình chiếu vuông góc của điểm P lên BC, CA, AB. a) Chứng minh BD2 + CE2 + AF2 = DC2 + EA2 + FB2. b) Xác định vị trí của điểm P trong tam giác ABC để tổng DC2 + EA2 + FB2 đạt giá trị nhỏ nhất.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 - 2024 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bắc Ninh; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào thứ Năm ngày 18 tháng 01 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2023 – 2024 sở GD&ĐT Bắc Ninh : + Cho a, b, c là các số nguyên dương thỏa mãn a − b là số nguyên tố và 3c2 = ab + bc + ca. Chứng minh 8c + 1 là số chính phương. + Cho nửa đường tròn đường kính BC = 2R. Gọi M là điểm di động trên nửa đường tròn (M khác B, C). Kẻ MH vuông góc với BC (H thuộc BC). Gọi O1, O2 lần lượt là tâm đường tròn nội tiếp các tam giác MCH và MBH. Xác định vị trí điểm M để chu vi △O1HO2 lớn nhất. + Biết rằng mỗi điểm trên mặt phẳng được tô bằng một trong hai màu xanh hoặc đỏ. Chứng minh rằng tồn tại một tam giác có ba đỉnh và trọng tâm của nó cùng màu.