Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Hà Tĩnh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào thứ Hai ngày 06 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Hà Tĩnh : + Hưởng ứng “Ngày sách và Văn hóa đọc Việt Nam năm 2022”, một nhà sách đã có chương trình giảm giá cho tất cả các loại sách. Bạn Nam đến mua một quyển sách tham khảo môn Toán và một quyển sách tham khảo môn Ngữ văn với tổng giá ghi trên hai quyển sách đó là 195000 đồng. Nhưng do quyển sách tham khảo môn Toán được giảm giá 20% và quyển sách tham khảo môn Ngữ văn được giảm giá 35% nên bạn Nam chỉ phải trả cho nhà sách 138000 đồng để mua hai quyển sách đó. Hỏi giá ghi trên mỗi quyển sách tham khảo đó là bao nhiêu? + Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Biết độ dài đoạn BC = 10 cm và sin ABC = 4/5. Tính độ dài các đoạn AC và BH. + Cho tam giác ABC nhọn nội tiếp đường tròn (O), đường cao AH (H thuộc BC). Kẻ HM vuông góc AB và HN vuông góc AC (M thuộc AB và N thuộc AC). a) Chứng minh AMHN là tứ giác nội tiếp. b) Đường thẳng MN cắt cung nhỏ AC của đường tròn (O) tại D. Chứng minh OA vuông góc MN và AD = AH.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2022 - 2023 sở GDĐT Hậu Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT & THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hậu Giang; đề thi gồm 02 trang với 08 câu trắc nghiệm (20% tổng số điểm) và 05 câu tự luận (80% tổng số điểm), thời gian làm bài 90 phút (không tính thời gian phát đề), đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Hậu Giang : + Cho đường tròn O có bán kính R 3 và điểm M sao cho OM R 2. Từ M kẻ hai tiếp tuyến MA MB tới O với A và B là hai tiếp điểm. c) Chứng minh tứ giác MAOB nội tiếp. Tính diện tích S của tứ giác MAOB. d) Lấy điểm C trên đường tròn O sao cho tam giác ABC nhọn AB AC và có các đường cao BE CF. Gọi H là trực tâm tam giác ABC và N J lần lượt là trung điểm của BC AH. Chứng minh tứ giác AJNO là hình bình hành và JEN 90. + Tính chu vi của đường tròn ngoại tiếp tam giác, biết tam giác ABC vuông tại A và BC a 6. + Cho hình thang có đáy lớn BC đáy nhỏ AD AD BC cm AC cm 10 5 2 và ACB 45. Tính diện tích S của hình thang đã cho.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Nam; đề thi có đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Hà Nam : + Cho tam giác ABC AB AC có các góc nhọn nội tiếp đường tròn O R. Các đường cao AK BE CF của tam giác ABC cắt nhau tại H và cắt đường tròn O R tại các điểm lần lượt là MNP (M khác A N khác B P khác C). 1. Chứng minh EF PN. 2. Chứng minh diện tích tứ giác AEOF bằng 2 EF R 3. Tính giá trị của biểu thức AM BN CP AK BE CF 4. Gọi S và Q là chân đường vuông góc kẻ từ điểm K đến các cạnh AB AC. Đường thẳng QS cắt BC tại G, đường thẳng GA cắt đường tròn O R tại điểm J (J khác A). Gọi I là tâm đường tròn ngoại tiếp tứ giác BCQS. Chứng minh ba điểm IKJ thẳng hàng. + Cho đường thẳng (d) có phương trình ym xm 2 21 (với m là tham số) và điểm A(−1;2). Tìm tất cả các giá trị của m để khoảng cách từ điểm A đến đường thẳng (d) đạt giá trị lớn nhất. + Cho ba số thực dương abc thỏa mãn 222 a b c ab bc ca 22 0. Chứng minh: 222 2 2 2 2 3 a b c c ab a b abc ab.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên Toán) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào ngày 11 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Bình Định : + Cho tam giác ABC nhọn AB AC nội tiếp đường tròn (O), các đường cao AD BE CF cắt nhau tại H. Gọi M là trung điểm BC. a) Chứng minh tứ giác DMEF là tứ giác nội tiếp. b) Đường tròn tâm I đường kính AH cắt đường tròn (O) tại điểm thứ hai là P. Kẻ đường kính AK của đường tròn (O). Chứng minh bốn điểm P H M K thẳng hàng. c) Các tiếp tuyến tại A và P của đường tròn (I) cắt nhau ở N. Chứng minh ba đường thẳng MN EF AH đồng quy. + Có tất cả bao nhiêu đa thức P x có bậc không lớn hơn 2 với các hệ số nguyên không âm và thỏa mãn điều kiện P(3) = 100. + Cho phương trình 3 2 x bx cx 1 0 trong đó b c là các số nguyên. Biết phương trình có nghiệm 0 x 2 5. Tìm b c và các nghiệm còn lại của phương trình.
Đề tuyển sinh lớp 10 môn Toán năm 2022 - 2023 trường THPT chuyên Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023 trường THPT chuyên Bắc Giang; kỳ thi được diễn ra vào ngày 06 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 – 2023 trường THPT chuyên Bắc Giang : + Cho nửa đường tròn O R đường kính AB. Gọi M là một điểm thuộc nửa đường tròn đã cho, H là hình chiếu của M trên AB. Đường thẳng qua O và song song với MA cắt tiếp tuyến tại B của nửa đường tròn O tại điểm K. 1) Chứng minh bốn điểm O B K M cùng thuộc một đường tròn. 2) Gọi C D lần lượt là hình chiếu của H trên các đường thẳng MA và MB. Chứng minh ba đường thẳng CD MH AK đồng quy. 3) Gọi E F lần lượt là trung điểm của AH và BH. Xác định vị trí của điểm M để diện tích tứ giác CDFE đạt giá trị lớn nhất. + Cho chín số nguyên dương 1 2 9 a a a đều không có ước số nguyên tố nào khác 3; 5 và 7. Chứng minh rằng trong chín số đã cho luôn tồn tại hai số mà tích của hai số này là một số chính phương. + Tìm tất cả các giá trị của tham số m để phương trình 3 2 2 2 x m x m m x m m 2 1 2 1 0 có ba nghiệm phân biệt 1 2 3 x x x thỏa mãn 2 2 2 1 2 3 1 2 3 x x x x x x 3 0.