Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện môn Toán năm 2022 - 2023 phòng GDĐT Cam Lâm - Khánh Hòa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Cam Lâm, tỉnh Khánh Hòa; kỳ thi được diễn ra vào ngày 17 tháng 09 năm 2022. Trích dẫn đề học sinh giỏi huyện môn Toán năm 2022 – 2023 phòng GD&ĐT Cam Lâm – Khánh Hòa : + Một lớp học của trường X có 40 học sinh, trong đó có 30 học sinh thích môn Toán và 20 học sinh thích môn Văn. Hỏi : 1) Có nhiều nhất bao nhiêu học sinh thích cả hai môn Văn và Toán? 2) Có ít nhất bao nhiêu học sinh thích cả hai môn Văn và Toán? 3) Nếu chỉ có 3 học sinh không thích cả môn Văn lẫn môn Toán thì có bao nhiêu học sinh thích cả hai môn Văn lẫn Toán? + Cho tam giác ABC vuông tại A. Từ điểm D trên cạnh huyền BC kẻ DE vuông góc với AB, DF vuông góc với AC. 1) Chứng minh tứ giác AEDF là hình chữ nhật. 2) Chứng minh EA.EB + FA.FC = DB.DC. 3) Giả sử AB = 6cm, AC = 8cm. Xác định vị trí của điểm D để diện tích tứ giác AEDF là lớn nhất. + Năm vận động viên mang số áo là 1; 2; 3; 4; 5 được chia thành hai nhóm. Chứng tỏ rằng ở một trong hai nhóm ta luôn có hai vận động viên mà hiệu các số áo họ mang trùng với một trong các số áo mà người của nhóm đó mang.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi tỉnh Toán THCS năm 2021 - 2022 sở GDĐT Thừa Thiên Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào thứ Năm ngày 14 tháng 04 năm 2022. Trích dẫn đề học sinh giỏi tỉnh Toán THCS năm 2021 – 2022 sở GD&ĐT Thừa Thiên Huế : + Cho các số thực a, b, c thỏa mãn a khác 0 và 2a + 3b + 6c = 0. Chứng minh rằng phương trình ax2 + bx + c = 0 có hai nghiệm phân biệt x1, x2 và tìm giá trị nhỏ nhất của biểu thức |x1 – x2|. + Tìm các cặp nghiệm nguyên dương (x;y) thỏa mãn phương trình: x2 + y2 + 2(1 + y)x = 14y – 1. + Cho nửa đường tròn đường kính BC = 2R và A là điểm di động trên nửa đường tròn đó. Gọi D là hình chiếu vuông góc của A lên BC và M, N lần lượt là tâm đường tròn nội tiếp các tam giác ABD, ACD. a) Chứng minh: CN vuông góc với AM. b) Chứng minh: DMN và DBA là hai tam giác đồng dạng. c) Gọi d là đường thẳng đi qua A và vuông góc với MN. Chứng minh rằng d luôn đi qua một điểm cố định. d) Tìm vị trí của điểm A để đoạn MN có độ dài lớn nhất và tính độ dài lớn nhất đó theo R.
Đề học sinh giỏi Toán 9 cấp tỉnh năm 2021 - 2022 sở GDĐT Tuyên Quang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi (HSG) môn Toán 9 cấp tỉnh năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Tuyên Quang. Trích dẫn đề học sinh giỏi Toán 9 cấp tỉnh năm 2021 – 2022 sở GD&ĐT Tuyên Quang : + Cho tam giác ABC cân tại A. Gọi D là trung điểm của đoạn thẳng AC. Phân giác trong của góc BAC cắt đường tròn ngoại tiếp tam giác BCD tại E (E thuộc miền trong tam giác ABC). Đường thẳng BD cắt đường tròn ngoại tiếp tam giác ABE tại F khác B. Đường thẳng AF cắt BE tại I và CI cắt BD tại K. a) Chứng minh rằng BI là tia phân giác của góc ABK. b) Gọi M là trung điểm của BC. Chứng minh rằng tứ giác AFMC nội tiếp đường tròn. c) Chứng minh rằng AD2 = DK.DB. + Cho các số nguyên dương a b n không chia hết cho số nguyên tố lẻ p. Chứmg minh rằng A không chia hết cho p. + Trên một tờ giấy A4 kích thước 210mm x 297mm, bạn An vẽ 30 đường tròn bán kính 1cm. Chứng minh rằng sau khi bạn An vẽ 30 đường tròn, bạn Bình luôn dựng được 5 hình vuông có độ dài các cạnh là 2cm mà không có điểm chung với bất kỳ đường tròn nào và hai hình vuông bất kỳ cũng không giao nhau.
Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND thành phố Bắc Ninh, tỉnh Bắc Ninh. Trích dẫn đề học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Bắc Ninh : + Tìm tất cả các số nguyên dương n sao cho mỗi số n 26 và n 11 đều là các lập phương của một số nguyên dương. + Cho tam giác nhọn ABC nội tiếp đường tròn O R có B C cố định. Các đường cao AD BE CF của tam giác ABC đồng quy tại H. Đường thẳng chứa tia phân giác ngoài của BHC cắt AB AC lần lượt tại M N. a) Chứng minh rằng tam giác AMN cân. b) Chứng minh OA vuông góc với EF AD BC DE EF FD R. c) Đường tròn ngoại tiếp tam giác AMN cắt đường phân giác của BAC tại K K A. Chứng minh rằng HK luôn đi qua một điểm cố định khi A thay đổi. + Cho mỗi điểm trên mặt phẳng được tô bằng một trong hai màu xanh, đỏ. Chứng minh rằng tồn tại một tam giác mà ba đỉnh và trọng tâm cùng màu.
Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 10 tháng 02 năm 2022.