Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 9 năm 2019 - 2020 trường THPT chuyên Hà Nội - Amsterdam

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi HK1 Toán 9 năm học 2019 – 2020 trường THPT chuyên Hà Nội – Amsterdam, đề gồm có 05 bài toán tự luận, trong đó có 04 bài toán chung cho mọi học sinh và một bài toán riêng cho lớp chọn, học sinh có 90 phút để làm bài thi học kì. Trích dẫn đề thi HK1 Toán 9 năm 2019 – 2020 trường THPT chuyên Hà Nội – Amsterdam : + Trong mặt phẳng với hệ tọa độ Oxy cho hai đường thẳng (d): y = x + 6 và (dm): y = (m^2 – 3m + 3)x + m^2 + m (với m là tham số). 1. Tìm m để đường thẳng (dm) đi qua điểm M(-1;1). 2. Tìm m để đường thẳng (dm) song song với đường thẳng (d). Với giá trị m vừa tìm được, hãy tính khoảng cách giữa hai đường thẳng (dm) và (d). [ads] + Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến (O) với B, C là các tiếp điểm. Kẻ một đường thẳng d nằm giữa hai tia AB, AO và đi qua A cắt đường tròn (O) tại E, F (E nằm giữa A, F). 1. Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn. 2. Gọi H là giao điểm của AD và BC. Chứng minh OH.OA = OE^2. 3. Đường thẳng qua O vuông góc với EF cắt BC tại E. Chứng minh SF là tiếp tuyến của đường tròn (O). 4. Đường thẳng SF cắt các đường thẳng AB và AC tương ứng tại P và Q. Đường thẳng OF cắt BC tại K. Chứng minh rằng AK đi qua trung điểm của PQ.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Lê Quý Đôn - Hà Nội
Đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Lê Quý Đôn – Hà Nội gồm 04 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào thứ Hai ngày 20 tháng 12 năm 2021.
Đề thi học kì 1 Toán 9 năm 2021 - 2022 trường M.V. Lômônôxốp - Hà Nội
Đề thi học kì 1 Toán 9 năm 2021 – 2022 trường M.V. Lômônôxốp – Hà Nội gồm 02 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày … tháng 12 năm 2021. Trích dẫn đề thi học kì 1 Toán 9 năm 2021 – 2022 trường M.V. Lômônôxốp – Hà Nội : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) 1) Vẽ đường thẳng (d) trong mặt phẳng tọa độ Oxy với m = 3. 2) Tìm m để đường thẳng (d) song song với đường thẳng (d1): y = -5x + 1. 3) Tìm m để đường thẳng (d) cắt đường thẳng (d2): y = 3x – 2 tại một điểm nằm bên phải của trục tung. + Ở siêu thị có một thang máy cuốn (như hình vẽ) nhằm giúp khách hàng di chuyển từ tầng này lên tầng kế của siêu thị rất tiện lợi. Biết rằng thang cuốn này được thiết kế có độ nghiêng so với phương ngang một góc BAC bằng 35° và quãng đường di chuyển từ tầng một lên tầng hai (theo phương chuyển động của thang cuốn) AB = 10m. Hỏi khoảng cách giữa hai tầng của siêu thị là bao nhiêu mét? (kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho đường tròn (O; R), đường kính AB. Qua A kẻ tia tiếp tuyến Ax với đường tròn (O). Trên tia Ax lấy điểm C bất kì (C khác A). Từ điểm C kẻ tiếp tuyến CM với đường tròn (O) (M là tiếp điểm). a) Chứng minh: Bốn điểm C, M, O, A cùng thuộc một đường tròn. b) Gọi N là giao điểm thứ hai của CB với đường tròn (O). Chứng minh tam giác ANB vuông và CN.CB = CM2. c) Từ O kẻ tia Oy vuông góc với MB, cắt tia CM tại H. Chứng minh: HB là tiếp tuyến của đường tròn (O). d) Gọi E và F lần lượt là trung điểm của CA và CM. Trên đoạn thẳng EF lấy điểm K, kẻ tiếp tuyến KT với đường tròn (O) (T là tiếp điểm). Chứng minh: KC = KT.
Đề thi học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Hàm Rồng - Thanh Hóa
Đề thi học kỳ 1 Toán 9 năm 2021 – 2022 trường THCS Hàm Rồng – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút.
Đề thi cuối HK1 Toán 9 năm 2020 - 2021 phòng GDĐT Quốc Oai - Hà Nội
Đề thi cuối HK1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi cuối HK1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội : + Cho hàm số bậc nhất y = (m – 1)x + 4 (m khác 1) có đồ thị là đường thẳng d. a/ Tìm m để đường thẳng d song song với đường thẳng y = 2x + 1. b/ Vẽ đồ thị với m tìm được ở câu a. c/ Đường thẳng d cắt trục Ox tại A, cắt trục Oy tại B. Tìm m để diện tích tam giác DAB bằng 2. + Một cầu trượt trong công viên có độ dốc so với mặt đất là 28° và độ cao là 2,1m. Tính độ dài của mặt cầu trượt? (Làm tròn đến chữ số thập phân thứ nhất). + Cho các số thực dương x, y, z thỏa mãn: xy + yz + xz = 1. Tìm GTNN của biểu thức: A = 10(x^2 + y^2) + z^2.