Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT năm 2019 môn Toán sở GD ĐT Đà Nẵng

Nội dung Đề tuyển sinh THPT năm 2019 môn Toán sở GD ĐT Đà Nẵng Bản PDF - Nội dung bài viết Đề tuyển sinh THPT năm 2019 môn Toán sở GD ĐT Đà Nẵng Đề tuyển sinh THPT năm 2019 môn Toán sở GD ĐT Đà Nẵng Sytu xin gửi đến quý thầy cô và các em học sinh đề tuyển sinh lớp 10 THPT năm 2019 môn Toán sở Giáo dục và Đào tạo thành phố Đà Nẵng. Đề thi bao gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 120 phút, có đáp số và hướng dẫn giải. Trích đề tuyển sinh lớp 10 THPT năm 2019 môn Toán sở GD&ĐT Đà Nẵng: Đề bài 1: Cho đường tròn (O) tâm O, đường kính AB và C là điểm nằm trên đoạn thẳng OB (với C khác B). ... Đề bài 2: Một mảnh đất hình chữ nhật có diện tích 80 mét vuông. Nếu giảm chiều rộng 3 mét và tăng chiều dài 10 mét thì diện tích mảnh đất tăng thêm 20 mét vuông. Tính kích thước của mảnh đất. Đề bài 3: Cho phương trình 4x^2 + (m^2 + 2m – 15)x + (m + 1)^2 – 20 = 0, với m là tham số. ... Đề thi này mang đến những bài toán thú vị, đòi hỏi sự tư duy logic và khả năng giải quyết vấn đề của các thí sinh. Hy vọng rằng các em sẽ tự tin và thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Tuyển tập 20 năm đề thi tuyển sinh vào môn Toán sở GD ĐT Hòa Bình
Nội dung Tuyển tập 20 năm đề thi tuyển sinh vào môn Toán sở GD ĐT Hòa Bình Bản PDF - Nội dung bài viết Tuyển tập 20 năm đề thi tuyển sinh vào môn Toán sở GD ĐT Hòa Bình Tuyển tập 20 năm đề thi tuyển sinh vào môn Toán sở GD ĐT Hòa Bình Tài liệu "Tuyển tập 20 năm đề thi tuyển sinh vào môn Toán sở GD ĐT Hòa Bình" bao gồm 39 trang, được tổng hợp bởi các tác giả: Lưu Công Hoàn, Trần Thu Hà, Lê Đức Thọ, Trương Hữu Thanh, Bùi Văn Vịnh, Đào Tuấn Anh. Tuyển tập này bao gồm đề thi tuyển sinh vào lớp 10 môn Toán từ năm 2000 đến năm 2020. Danh sách các đề thi bao gồm: Đề tuyển sinh vào lớp 10 môn Toán năm học 2000 – 2001 sở GD&ĐT Hòa Bình Đề tuyển sinh vào lớp 10 môn Toán năm học 2001 – 2002 sở GD&ĐT Hòa Bình Đề tuyển sinh vào lớp 10 môn Toán năm học 2002 – 2003 sở GD&ĐT Hòa Bình Và còn nhiều đề thi khác trong suốt 20 năm qua Đây là tài liệu cực kỳ hữu ích cho các bạn học sinh đang chuẩn bị tuyển sinh vào lớp 10, giúp họ ôn luyện và nâng cao kiến thức môn Toán một cách hiệu quả.
Đề thi thử vào 10 năm 2020 2021 môn Toán trường Gang Thép Thái Nguyên
Nội dung Đề thi thử vào 10 năm 2020 2021 môn Toán trường Gang Thép Thái Nguyên Bản PDF - Nội dung bài viết Đề thi thử vào 10 năm 2020-2021 môn Toán trường Gang Thép Thái Nguyên Đề thi thử vào 10 năm 2020-2021 môn Toán trường Gang Thép Thái Nguyên Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề thi thử tuyển sinh vào lớp 10 THPT năm học 2020-2021 môn Toán trường THPT Gang Thép, tỉnh Thái Nguyên. Đề thi bao gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, và có đáp án chi tiết. Dưới đây là một số câu hỏi từ đề thi thử: Trên một vùng biển phẳng, vào lúc 6 giờ có một tàu cá và một tàu du lịch đi qua điểm X theo hướng và tốc độ khác nhau. Đến 8 giờ, khoảng cách giữa hai tàu là 60 km. Hãy tính vận tốc của mỗi tàu. Cho hai đường tròn tiếp xúc ngoài tại E. Vẽ tiếp tuyến chung ngoài MN của hai đường tròn và tiếp tuyến chung trong của hai đường tròn tại E cắt MN tại A. Hãy chứng minh tứ giác MAEO1 và NAEO2 là các tứ giác nội tiếp và tính độ dài MN theo bán kính của hai đường tròn. Cho tam giác nhọn ABC (AB < AC). Đường tròn tâm O đường kính BC cắt cạnh AC, AB lần lượt tại D và E. H là giao điểm của BD và CE. K là giao điểm của DE và AH. F là giao điểm của AH và BC. M là trung điểm của AH. Chứng minh rằng MA2 = MK.MF. Đây là một số câu hỏi thú vị, đa dạng và phong phú từ đề thi thử vào lớp 10 môn Toán của trường THPT Gang Thép Thái Nguyên. Chúc các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!
Đề thi thử vào 10 môn Toán năm 2020 2021 trường THPT Lương Ngọc Quyến Thái Nguyên
Nội dung Đề thi thử vào 10 môn Toán năm 2020 2021 trường THPT Lương Ngọc Quyến Thái Nguyên Bản PDF - Nội dung bài viết Đề thi thử vào 10 môn Toán năm 2020-2021 trường THPT Lương Ngọc Quyến Thái Nguyên Đề thi thử vào 10 môn Toán năm 2020-2021 trường THPT Lương Ngọc Quyến Thái Nguyên Vào ngày ... tháng 06 năm 2020, trường THPT Lương Ngọc Quyến ở Thái Nguyên đã tổ chức kỳ thi thử tuyển sinh vào lớp 10 THPT cho năm học 2020-2021 với môn thi Toán. Đề thi thử vào lớp 10 môn Toán năm 2020-2021 của trường THPT Lương Ngọc Quyến ở Thái Nguyên bao gồm 01 trang với 10 bài toán dạng tự luận. Mỗi bài toán được tính điểm và thời gian làm bài là 120 phút. Đề thi cung cấp đáp số và lời giải chi tiết cho các bài toán. Ví dụ về một số câu hỏi trong đề thi: Cho tứ giác ABCD có AC vuông góc với BD, AC = 8cm, BD = 6cm. Gọi E, F, G, H là trung điểm của AB, BC, CD, DA. Chứng minh rằng bốn điểm E, F, G, H đều thuộc một đường tròn, và tính bán kính của đường tròn đó. Cho tam giác ABC cân tại A. Vẽ đường tròn (O;R) tiếp xúc với AB, AC tại B, C. Một điểm M bất kỳ trên cạnh BC, vẽ đường thẳng vuông góc với OM cắt tia AB, AC lần lượt tại D, E. Chứng minh tam giác ODE cân. Cho hai đường tròn (O;R) và (O’;R’) cắt nhau tại A, B. Kẻ tiếp tuyến chung DE của hai đường tròn sao cho B gần tiếp tuyến hơn so với A, gọi M là giao điểm của AB và DE. Chứng minh rằng MD^2 = ME^2 = MA.MB và đường thẳng EB cắt AD tại P, DB cắt AE tại Q. Chứng minh rằng PQ song song với DE. Đề thi thử này sẽ giúp học sinh ôn tập kiến thức và làm quen với cấu trúc đề thi tuyển sinh vào lớp 10. Hy vọng rằng các em sẽ có kết quả tốt trong kỳ thi sắp tới.
Đề thi thử vào môn Toán năm 2020 2021 phòng GD ĐT Lộc Bình Lạng Sơn
Nội dung Đề thi thử vào môn Toán năm 2020 2021 phòng GD ĐT Lộc Bình Lạng Sơn Bản PDF - Nội dung bài viết Đề thi thử vào môn Toán năm 2020-2021 phòng GD&ĐT Lộc Bình Lạng Sơn Đề thi thử vào môn Toán năm 2020-2021 phòng GD&ĐT Lộc Bình Lạng Sơn Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề thi thử tuyển sinh vào lớp 10 THPT môn Toán năm học 2020-2021 của phòng GD&ĐT Lộc Bình, Lạng Sơn. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 120 phút. Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2020-2021 phòng GD&ĐT Lộc Bình, Lạng Sơn: Cho một khu vườn hình chữ nhật có chu vi 280m. Người ta làm một lối đi xung quanh vườn (thuộc đất vườn) rộng 2m, diện tích còn lại để trồng trọt là 4256 m2. Hãy tính kích thước (các cạnh) của khu vườn đó. Cho tam giác ABC vuông tại A. Trên cạnh AC lấy điểm M. Đường tròn tâm O đường kính MC cắt BC tại điểm E. Đường thẳng BM cắt đường tròn (O) tại điểm D. a) Chứng minh tứ giác ABEM nội tiếp. b) Chứng minh rằng ME.CB = MB.CD. c) Gọi I là giao điểm của BA và CD, J là tâm đường tròn ngoại tiếp tam giác IBC. Chứng minh rằng AD vuông góc với IJ. Cho a, b, c là các số thực không âm thỏa mãn 0 ≤ a ≤ b ≤ c ≤ 1. Tìm giá trị lớn nhất của biểu thức: Q = a^2.(b - c) + b^2.(c - b) + c^2.(1 - c).