Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 12 lần 2 năm 2019 - 2020 trường Thạch Thành 3 - Thanh Hóa

Nằm trong kế hoạch ôn tập, rèn luyện kiến thức đối với học sinh khối 12, hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán năm học 2019 – 2020, vừa qua, tổ Toán trường THPT Thạch Thành số 3, tỉnh Thanh Hóa tiếp tục tổ chức kỳ thi khảo sát chất lượng lớp 12 môn Toán lần thi thứ hai. Đề khảo sát Toán 12 lần 2 năm 2019 – 2020 trường Thạch Thành 3 – Thanh Hóa mã đề 001, đề gồm có 06 trang với 50 câu trắc nghiệm, học sinh có 90 phút để làm bài thi. Trích dẫn đề khảo sát Toán 12 lần 2 năm 2019 – 2020 trường Thạch Thành 3 – Thanh Hóa : + Để làm một sản phẩm lịch Canh Tý 2020 để bàn như hình vẽ cần dùng 50cm2 giấy cho mỗi mặt (ứng với một tháng trong năm). Biết đơn giá giấy trên thị trường là 200.000 đồng/m2. Hỏi chi phí giấy cần dùng để làm một sản phẩm lịch trên bằng? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E là điểm đối xứng với C qua B và F là điểm thỏa mãn: SF = -2BF. Mặt phẳng (DEF) chia khối chóp S.ABCD thành 2 khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích V1, khối đa diện còn lại có thể tích V2 (tham khảo hình vẽ). Tính tỉ số V1/V2. [ads] + Nhân dịp đi du Xuân Canh Tý, ba bạn Trang, Hoàng, Tân rủ nhau rút quẻ xem vận mệnh. Khi đó trong hộp chỉ còn các quẻ có số thứ tự từ 5 đến 15 (luôn có ít nhất ba quẻ cùng ghi một số). Mỗi bạn rút ngẫu nhiên một quẻ và yêu cầu bạn Linh tính xác suất để tổng các số ghi trên ba quẻ là một số chia hết cho 3. Kết quả đúng là? + Tìm tất cả các giá trị của tham số m để đường thẳng đi qua cực đai, cực tiểu của đồ thị hàm số y = x^3 – 3mx^2 + 2 cắt đường tròn (C) tâm I(1;1), bán kính bằng 1 tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB đạt giá trị lớn nhất? + Bà chủ khách sạn trên đèo Mã Pì Lèng muốn trang trí một góc nhỏ trên ban công sân thượng cho đẹp nên quyết định thuê nhân công xây một bức tường gạch với xi măng (như hình vẽ), biết hàng dưới cùng có 500 viên, mỗi hàng tiếp theo đều có ít hơn hàng trước 1 viên và hàng trên cùng có 1 viên. Hỏi số gạch cần dùng để hoàn thành bức tường trên là bao nhiêu viên?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL ôn thi THPT Quốc gia 2019 môn Toán trường THPT chuyên Vĩnh Phúc lần 1
Đề KSCL ôn thi THPT Quốc gia 2019 môn Toán trường THPT chuyên Vĩnh Phúc lần 1 mã đề 789 gồm 6 trang được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, thí sinh làm bài trong 90 phút, đề nhằm giúp học sinh lớp 12 ôn tập từ sớm để từng bước chuẩn bị cho kỳ thi THPTQG 2019 môn Toán, đề thi có đáp án các mã đề 123, 234, 345, 456, 567, 678, 789 và có lời giải chi tiết. Trích dẫn đề KSCL ôn thi THPT Quốc gia 2019 môn Toán trường THPT chuyên Vĩnh Phúc lần 1 : + Một xe buýt của hãng xe A có sức chứa tối đa là 50 hành khách. Nếu một chuyến xe buýt chở x hành khách thì giá tiền cho mỗi hành khách là 20(3 – x/40)^2 (nghìn đồng). Khẳng định nào sau đây là khẳng định đúng? A. Một chuyến xe buýt thu được số tiền nhiều nhất khi có 50 hành khách. B. Một chuyến xe buýt thu được số tiền nhiều nhất khi có 45 hành khách. C. Một chuyến xe buýt thu được số tiền nhiều nhất bằng 2.700.000 (đồng). D. Một chuyến xe buýt thu được số tiền nhiều nhất bằng 3.200.000 (đồng). [ads] + Có 30 tấm thẻ được đánh số thứ tự từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm . Tính xác suất để lấy được 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong có có đúng một tấm thẻ mang số chia hết cho 10. + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, AC = a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính khoảng cách giữa hai đường thẳng AD và SC, biết góc giữa đường thẳng SD và mặt đáy bằng 60°.
Đề KSCL đầu năm 2018 - 2019 môn Toán 12 trường THPT Lê Văn Thịnh - Bắc Ninh
Đề KSCL đầu năm 2018 – 2019 môn Toán 12 trường THPT Lê Văn Thịnh – Bắc Ninh mã đề 132 được biên soạn theo hình thức tương tự như đề thi THPT Quốc gia với 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong thời gian 90 phút, kỳ thi được tổ chức vào ngày 16/09/2018. Nội dung kiểm tra hướng đến gồm: nội dung chương trình Toán 11, chủ đề khảo sát và đồ thị hàm số, khối đa diện và thể tích. Đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL đầu năm 2018 – 2019 môn Toán 12 trường THPT Lê Văn Thịnh – Bắc Ninh : + Cho hàm số y = f(x) có đạo hàm trên đoạn [a;b]. Ta xét các khẳng định sau: (1) Nếu hàm số y = f(x) đạt cực đại tại điểm x0 ∈ (a;b) thì f(x0) là giá trị lớn nhất của f(x) trên [a;b]. (2) Nếu hàm số y = f(x) đạt cực đại tại điểm x0 ∈ (a;b) thì f(x0) là giá trị nhỏ nhất của f(x) trên [a;b]. (3) Nếu hàm số f(x) đạt cực đại tại điểm x0 và đạt cực tiểu tại điểm x1 (x0, x1 ∈ (a;b)) thì ta luôn có f(x0) > f(x1). Số khẳng định đúng là? [ads] + Cho hai đường thẳng cố định a và b chéo nhau. Gọi AB là đoạn vuông góc chung của a và b (A thuộc a, B thuộc b). Trên a lấy điểm M (khác A), trên b lấy điểm N (khác B ) sao cho AM = x, BN = y, x + y = 8. Biết AB = 6, góc giữa hai đường thẳng a và b bằng 60 độ. Khi thể tích khối tứ diện ABNM đạt giá trị lớn nhất hãy tính độ dài đoạn MN (trong trường hợp MN = 8). + Cho hàm số y = (x + 1)/(2 – x). Khẳng định nào sau đây đúng? A. Hàm số đã cho đồng biến trên từng khoảng xác định của nó. B. Hàm số đã cho đồng biến trên khoảng (-∞;2) ∪ (2;+∞). C. Hàm số đã cho đồng biến trên R. D. Hàm số đã cho nghịch biến trên từng khoảng xác định của nó.
Đề KSCL Toán 12 năm 2018 trường THPT số 2 An Nhơn - Bình Định lần 3
Đề KSCL Toán 12 năm 2018 trường THPT số 2 An Nhơn – Bình Định lần 3 mã đề 209 nằm trong chuyên mục đề thi thử môn Toán hướng đến kỳ thi THPT Quốc gia 2018, đề 07 trang với 50 câu hỏi trắc nghiệm khách quan, thí sinh có 90 phút để làm bài thi. Trích dẫn đề KSCL Toán 12 năm 2018 trường THPT số 2 An Nhơn – Bình Định lần 3 : + Người dân Bình Định truyền nhau câu ca dao: “Muốn ăn bánh ít lá gai – Lấy chồng Bình Định sợ dài đường đi”. Muốn ăn bánh ít lá gai thì bạn phải tìm về với xứ Tuy Phước – Bình Định. Nơi đây nổi tiếng trứ danh với món bánh nghe cái tên khá lạ lẫm “Bánh ít lá gai” và hương vị làm say đắm lòng người. Trong một lô sản phẩm trưng bày bánh ít lá gai ở hội chợ ẩm thực huyện Tuy Phước gồm 40 chiếc bánh, 25 chiếc bánh có nhiều hạt mè và 15 chiếc bánh có ít hạt mè, một du khách muốn chọn 5 chiếc bánh, tính xác xuất để du khách đó chọn được ít nhất 2 chiếc bánh có nhiều hạt mè. (các chiếc bánh có khả năng được chọn là như nhau). [ads] + Du khách ghé thăm Bình Định không thể bỏ qua địa danh Tháp Bánh Ít nổi tiếng, nằm ở vị trí thấp nhất là tháp cổng cách tháp chính 100 mét. Tháp cổng được trang trí khá đơn giản nhưng lại trông vô cùng khỏe khoắn, vững chãi. Tháp có hai cửa nằm cùng một trục với tháp chính, hướng Đông – Tây để tạo nên sự hòa hợp về mặt kiến trúc và có hình dáng là một cung Parabol, hai cửa cách nhau 8 mét, có chiều cao 4 mét, lối đi rộng 1 mét thông hai cửa với nhau. Hãy tính thể tích phần không gian lối đi giới hạn giữa hai cửa. + Bình Định có câu ca dao: “Cưới nàng đôi nón Gò Găng – Xấp lãnh An Thái một khăn trầu nguồn”. Nói đến câu ca dao này là nói đến một làng nghề truyền thống có hàng trăm năm tuổi của thị xã An Nhơn, tỉnh Bình Định – làng nghề làm nón lá Gò Găng. Nhân kỷ niệm 10 năm được công nhận thị xã, thị xã An Nhơn lên kế hoạch làm các mô hình biểu tượng làng nghề truyền thống trên địa bàn, trong đó có mô hình chiếc nón lá Gò Găng. Chiếc nón có bán kính đáy 1 mét và chiều cao 1,5 mét; khung thép dùng làm đường tròn đáy và 10 đường nối từ đỉnh của nón đến đường tròn đáy có giá thành 40.000 đồng/mét; lá của cây lá nón Licuala Fatoua Becc dùng để làm mặt nón có giá thành 20.000 đồng/mét vuông. Hỏi kinh phí để làm chiếc nón biểu tượng này là bao nhiêu? (bỏ qua diện tích các mép nối và làm tròn đến nghìn đồng).
Đề KSCL Toán 12 năm 2017 - 2018 trường Sào Nam - Quảng Nam lần 3
Đề KSCL Toán 12 năm 2017 – 2018 trường Sào Nam – Quảng Nam lần 3 nằm trong chuyên mục đề thi thử môn Toán hướng đến kỳ thi THPT Quốc gia năm 2018, đề gồm 05 trang với 50 câu hỏi trắc nghiệm, thí sinh làm bài trong thời gian 90 phút. Trích dẫn đề KSCL Toán 12 năm 2017 – 2018 trường Sào Nam – Quảng Nam lần 3 : + Gọi X là tập hợp tất cả các số tự nhiên có 8 chữ số lập từ các chữ số 1, 2, 3, 4, 5, 6. Chọn ngẫu nhiên một số trong tập hợp X. Xác suất để số chọn ra có đúng ba chữ số 1, các chữ số còn lại đôi một khác nhau và hai chữ số chẵn không đứng cạnh nhau bằng. [ads] + Cho hình trụ có trục OO’ và có bán kính đáy bằng 4. Một mặt phẳng song song với trục OO’ và cách OO’ một khoảng bằng 2 cắt hình trụ theo thiết diện là một hình vuông. Diện tích xung quanh của hình trụ đã cho bằng? + Cho số phức z thỏa mãn |z – 3 + 4i| = 5. Biết rằng tập hợp điểm trong mặt phẳng tọa độ biểu diễn các số phức w = 2z + 4 – i là đường tròn có tâm I(a;b), bán kính R. Tổng a + b + R bằng?