Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Ứng Hòa Hà Nội

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Ứng Hòa Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 năm 2023 - 2024 phòng GD&ĐT Ứng Hòa - Hà Nội Đề học sinh giỏi Toán lớp 9 năm 2023 - 2024 phòng GD&ĐT Ứng Hòa - Hà Nội Chào quý thầy, cô giáo và các em học sinh lớp 9, đây là đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2023 - 2024 của phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội. Hãy cùng Sytu khám phá nội dung hấp dẫn của bài thi này nhé! Trích dẫn Đề học sinh giỏi Toán lớp 9 năm 2023 - 2024 phòng GD&ĐT Ứng Hòa - Hà Nội: 1. Cho biểu thức P. a) Tìm điều kiện của x để biểu thức P có nghĩa. Rút gọn biểu thức P. b) Tìm giá trị nguyên của x để biểu thức P nhận giá trị nguyên. 2. Cho tam giác ABC vuông tại A có AB < AC. Kẻ đường cao AH (H thuộc BC), phân giác AM (M thuộc BC). Kẻ ME vuông góc với AB tại E; MF vuông góc với AC tại F. a) Tính độ dài đoạn thẳng BC và AH. b) Chứng minh BE.BA = BH.BM và HE là tia phân giác góc AHB. c) Chứng minh rằng BE HB CF HC. 3. Trong tuần, mỗi ngày bạn Việt Nam chỉ chơi một môn thể thao, bạn chạy ba ngày một tuần nhưng không bao giờ chạy trong hai ngày liên tiếp. Vào thứ Hai, bạn chơi bóng bàn và hai ngày sau đó bạn lại chơi bóng đá. Ngoài ra bạn còn đi bơi và chơi cầu lông, nhưng không bao giờ chơi cầu lông ngay sau ngày chạy hoặc đi bơi. Hỏi ngày nào trong tuần bạn ấy đi bơi? Hãy cùng thử sức và giải quyết những bài toán thú vị này để phát huy tối đa khả năng của mình. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Ninh Bình
Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Ninh Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Ninh Bình : + Cho đường tròn (O) và dây BC cố định (BC không phải là đường kính). Điểm A di động trên cung lớn BC sao cho tam giác ABC là tam giác nhọn. Gọi E là điểm đối xứng của B qua đường thẳng AC và F là điểm đối xứng của C qua đường thẳng AB. Gọi K là giao điểm của hai đường thẳng EC và FB, H là giao điểm của hai đường thẳng BE và CF. a) Chứng minh FAHB và ACKF là các tứ giác nội tiếp. b) Chứng minh KA là phân giác của góc BKC và ba điểm K, O, A thẳng hàng. c) Xác định vị trí của điểm A sao cho tứ giác BKCO có diện tích lớn nhất. + Cho 16 số nguyên dương lớn hơn 1 và nhỏ hơn 2021 đôi một nguyên tố cùng nhau. Chứng minh trong 16 số trên có ít nhất một số là số nguyên tố. + Cho 8045 điểm trên một mặt phẳng sao cho cứ 3 điểm bất kì thì tạo thành một tam giác có diện tích nhỏ hơn 1. Chứng minh rằng luôn có thể có ít nhất 2012 điểm nằm trong tam giác hoặc trên cạnh của một tam giác có diện tích nhỏ hơn 1.
Đề thi HSG Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Vinh - Nghệ An
Đề thi HSG Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Vinh – Nghệ An gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian giao đề).
Đề thi HSG thành phố Toán 9 năm 2021 - 2022 phòng GDĐT Đà Lạt - Lâm Đồng
Đề thi HSG thành phố Toán 9 năm 2021 – 2022 phòng GD&ĐT Đà Lạt – Lâm Đồng gồm 02 trang với 10 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Ba ngày 14 tháng 12 năm 2021.
Đề thi HSG huyện Toán 9 năm 2021 - 2022 phòng GDĐT Yên Thành - Nghệ An
Ngày … tháng 12 năm 2021, phòng Giáo dục và Đào tạo huyện Yên Thành, tỉnh Nghệ An tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 9 cấp huyện năm học 2021 – 2022. Đề thi HSG huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Yên Thành – Nghệ An gồm có 05 bài toán, thời gian làm bài 120 phút, đề thi gồm 01 trang.