Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa học kì 2 Toán 9 năm 2022 - 2023 trường THCS Yên Nghĩa - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Yên Nghĩa, quận Hà Đông, thành phố Hà Nội. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2022 – 2023 trường THCS Yên Nghĩa – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Nếu hai vòi nước cùng chảy vào một bể không có nước thì sau 6 giờ sẽ đầy bể. Nếu mở vòi thứ nhất trong 3 giờ rồi khóa lại và mở vòi thứ hai trong 2 giờ thì cả hai vòi chảy được 2/5 bể. Hỏi nếu mỗi vòi chảy một mình thì trong bao lâu mới đầy bể? + Một cầu trượt trong công viên có độ dốc là 28 độ và có độ cao là 2,1m. Tính độ dài của mặt cầu trượt (làm tròn kết quả đến chữ số thập phân thứ nhất). + Cho điểm A nằm bên ngoài đường tròn (O). Từ A kẻ hai tiếp tuyến AB, AC với đường tròn đó (B, C là các tiếp điểm). Gọi H là trung điểm của AB. Đường thẳng HC cắt đường tròn (O) tại K (K khác C). a) Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn. b) Chứng minh HB2 = HK.HC c) Gọi M là điểm đối xứng với K qua H. Chứng minh MO là tia phân giác của góc BMC.

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2017 2018 phòng GD ĐT Bắc Từ Liêm Hà Nội
Nội dung Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2017 2018 phòng GD ĐT Bắc Từ Liêm Hà Nội Bản PDF - Nội dung bài viết Đề thi giữa học kỳ 2 (HK2) lớp 9 môn Toán năm 2017 2018 phòng GD ĐT Bắc Từ Liêm Hà Nội Đề thi giữa học kỳ 2 (HK2) lớp 9 môn Toán năm 2017 2018 phòng GD ĐT Bắc Từ Liêm Hà Nội Xin chào quý thầy, cô giáo và các em học sinh lớp 9! Dưới đây là đề thi kiểm tra chất lượng giữa học kỳ 2 môn Toán lớp 9 năm học 2017 – 2018 từ Phòng Giáo dục và Đào tạo quận Bắc Từ Liêm, thành phố Hà Nội. Câu hỏi 1: Hai vòi nước cùng chảy vào một bể không có nước thì sau 12 giờ sẽ đầy bể. Nếu mở vòi I chảy trong 4 giờ rồi khóa lại và mở tiếp vòi II chảy trong 3 giờ thì được 3/10 bể. Hỏi nếu mỗi vòi chảy một mình thì sau bao lâu sẽ đầy bể? Câu hỏi 2: Cho nửa đường tròn (O) có đường kính AB, gọi K là điểm chính giữa cung AB. Trên cung KB, lấy điểm M (khác K, B). Trên tia AM lấy điểm N sao cho AN = BM. Kẻ dây BP // KM. Gọi Q là giao điểm của các đường thẳng AP và BM; E là giao điểm của PB và AM. 1) Chứng minh rằng: Tứ giác PQME nội tiếp đường tròn. 2) Chứng minh: ∆AKN = ∆BKM 3) Chứng minh: AM.BE = AN.AQ 4) Gọi R, S lần lượt là giao điểm thứ hai của QA, QB với đường tròn ngoại tiếp tam giác OMP. Chứng minh khi M di động trên cung KB thì trung điểm I của RS luôn nằm trên một đường cố định. Câu hỏi 3: Cho hàm số y = -x^2 có đồ thị là parabol (P) và hàm số y = x - 2 có đồ thị là đường thẳng (d). Gọi A và B là giao điểm của (d) với (P). Tính diện tích tam giác OAB. Chúc quý thầy, cô giáo và các em học sinh lớp 9 hoàn thành bài thi một cách tốt đẹp. Hy vọng rằng đề thi này sẽ giúp các em ôn tập và nắm vững kiến thức để thành công trong kỳ thi sắp tới.
Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2017 2018 trường THCS Dịch Vọng Hà Nội
Nội dung Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2017 2018 trường THCS Dịch Vọng Hà Nội Bản PDF - Nội dung bài viết Đề thi giữa học kì 2 môn Toán lớp 9 trường THCS Dịch Vọng Hà Nội năm học 2017-2018 Đề thi giữa học kì 2 môn Toán lớp 9 trường THCS Dịch Vọng Hà Nội năm học 2017-2018 Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi khảo sát chất lượng giữa học kì 2 môn Toán lớp 9 năm học 2017-2018 tại trường THCS Dịch Vọng, Hà Nội. Dưới đây là một số câu hỏi từ đề thi: Câu 1: Một xe khách và một xe du lịch khởi hành cùng từ A đến B. Biết vận tốc của xe du lịch lớn hơn vận tốc của xe khách là 20 km/h. Xe du lịch đến B trước 50 phút so với xe khách. Tính vận tốc của mỗi xe biết quãng đường AB dài 100km. Câu 2: Cho hàm số y = ax^2 với a > 0 có đồ thị là một parabol. a) Xác định giá trị của a sao cho parabol đi qua điểm A(1, 1). b) Vẽ đồ thị của hàm số y = ax^2 với giá trị a từ câu trên. c) Tìm tọa độ giao điểm của đường thẳng y = x + 2 và parabol với giá trị a đã xác định ở câu a. d) Tính diện tích tam giác AOB với A, B là điểm giao điểm của đường thẳng và parabol. Câu 3: Cho đường thẳng d và đường tròn O, R không có điểm chung. Kẻ OH vuông góc với d tại H. Chọn điểm M bất kì thuộc d. Qua M, kẻ hai tiếp tuyến MA và MB tới đường tròn OR. Nối AB cắt OH và OM lần lượt tại K và I. a) Chứng minh rằng 5 điểm M, H, A, O, B cùng thuộc một đường tròn. b) Chứng minh rằng OK = OH = OI = OM. c) Chứng minh rằng khi M di chuyển trên d thì đường thẳng AB đi qua một điểm cố định. d) Tìm vị trí của M để diện tích tam giác OIK đạt giá trị lớn nhất. Hy vọng rằng đề thi sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!