Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Hưng Yên

Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Hưng Yên Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hưng Yên; kỳ thi được diễn ra trong hai ngày: ngày thi thứ nhất 28/08/2023 và ngày thi thứ hai: 29/08/2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Hưng Yên : + Tam giác nhọn không cân ABC có trực tâm H và đường tròn ngoại tiếp (O), đường phân giác trong của góc BAC cắt BC tại K. Điểm Q nằm trên đường tròn (O) sao cho AQ vuông góc QK. Đường tròn ngoại tiếp tam giác AQH cắt AC, AB lần lượt tại Y, Z. Gọi T là giao điểm của BY và CZ, P là giao điểm của YZ và BC. a) Chứng minh rằng PZ/PY = BH/HC. b) Chứng minh rằng TH vuông góc KA. + Cho tam giác ABC nội tiếp đường tròn (O). Đường tròn nội tiếp (I) của tam giác ABC lần lượt tiếp xúc với BC, CA, AB tại D, E, F. Biết AI cắt BC tại S và cắt (O) tại điểm thứ hai là M. Các đường tròn ngoại tiếp tam giác BSM, CSM cắt ME, MF tương ứng tại K và L (K và L khác M). a) Chứng minh rằng bốn điểm I, L, S, K cùng nằm trên một đường tròn. b) Gọi T là giao điểm thứ hai của MD với (O). Chứng minh rằng đường tròn ngoại tiếp tam giác TKL tiếp xúc với (O). + Cô giáo có tất cả 2278 viên kẹo thuộc về k loại kẹo khác nhau. Cô chia cho các học sinh của mình mỗi người một số viên kẹo và không có học sinh nào nhận nhiều hơn một viên kẹo ở cùng một loại kẹo. Cô yêu cầu hai học sinh khác nhau bất kỳ so sánh các viên kẹo mình nhận được và viết số loại kẹo mà cả hai cùng có lên bảng. Biết rằng mỗi cặp học sinh bất kỳ đều được lên bảng đúng một lần. Gọi tổng các số được viết lên bảng là M. Xác định giá trị nhỏ nhất của M trong mỗi trường hợp sau: a) k = 67. b) k = 68.

Nguồn: sytu.vn

Đọc Sách

Đề chọn học sinh giỏi MTCT 12 năm 2019 2020 sở GD ĐT Thừa Thiên Huế
Nội dung Đề chọn học sinh giỏi MTCT 12 năm 2019 2020 sở GD ĐT Thừa Thiên Huế Bản PDF Ngày 04 tháng 10 năm 2019, sở Giáo dục và Đào tạo Thừa Thiên Huế tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh giải toán trên máy tính cầm tay năm học 2019 – 2020 dành cho học sinh khối 12. Đề chọn học sinh giỏi MTCT 12 năm 2019 – 2020 sở GD&ĐT Thừa Thiên Huế gồm 09 câu, thời gian làm bài 90 phút, thí sinh dự thi trình bày vắn tắt cách giải, công thức áp dụng. Trích dẫn đề chọn học sinh giỏi MTCT 12 năm 2019 – 2020 sở GD&ĐT Thừa Thiên Huế : + Tìm nghiệm gần đúng của phương trình: √(3x^2 + 12x + 18) + √(x^2 + x – 10) = 3√(x + 5). + Tính giá trị tổng tất cả các nghiệm của phương trình: 2sinx + cosx – sin2x = 1 trên đoạn [-4pi;4pi]. + Tìm ba chữ số tận cùng của tổng: M = 3^2018 + 3^2019 + 3^2020.
Đề chọn HSG thành phố lớp 12 môn Toán năm 2019 2020 sở GD ĐT Hải Phòng
Nội dung Đề chọn HSG thành phố lớp 12 môn Toán năm 2019 2020 sở GD ĐT Hải Phòng Bản PDF Ngày 19 tháng 09 năm 2019, sở Giáo dục và Đào tạo Hải Phòng tổ chức kỳ thi chọn học sinh giỏi thành phố môn Toán lớp 12 năm học 2019 – 2020. Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề chọn HSG thành phố Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Hải Phòng, đề thi dành cho bảng không chuyên, đề gồm 01 trang với 07 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề chọn HSG thành phố Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Hải Phòng : + Cho hình lăng trụ đứng ABC.A’B’C’ có AB = a, AC = 2a, AA’ = 2a√5 và góc BAC bằng 120 độ. Gọi M là trung điểm của cạnh CC’. a) Chứng minh rằng MB vuông góc với A M’. b) Tính khoảng cách từ điểm A đến mặt phẳng (A’BM) theo a. [ads] + Từ tập hợp tất cả các số tự nhiên có 5 chữ số mà các chữ số đều khác 0, lấy ngẫu nhiên một số. Tính xác suất để trong số tự nhiên được lấy ra có mặt đúng ba chữ số khác nhau. + Trong mặt phẳng với hệ tọa độ Oxy cho tứ giác ABCD nội tiếp đường tròn đường kính BD. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các đường thẳng BD và CD. Biết A(4;6), đường thẳng HK có phương trình 3x – 4y – 4 = 0, điểm C thuộc đường thẳng d1: x + y – 2 = 0 và điểm B thuộc đường thẳng d2: x – 2y – 2 = 0, điểm K có hoành độ nhỏ hơn 1. Tìm tọa độ các điểm B và C. File WORD (dành cho quý thầy, cô):
Đề chọn đội tuyển HSG Toán năm 2020 sở GD ĐT Khánh Hòa (vòng 1).
Nội dung Đề chọn đội tuyển HSG Toán năm 2020 sở GD ĐT Khánh Hòa (vòng 1). Bản PDF Thứ Năm ngày 19 tháng 09 năm 2019, sở Giáo dục và Đào tạo Khánh Hòa tổ chức kỳ thi chọn đội tuyển thi học sinh giỏi môn Toán khối THPT cấp Quốc gia năm 2020. Đề chọn đội tuyển HSG Toán năm 2020 sở GD&ĐT Khánh Hòa (vòng 1) gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn đội tuyển HSG Toán năm 2020 sở GD&ĐT Khánh Hòa (vòng 1) : + Chứng minh rằng với mỗi số nguyên dương n, tồn tại duy nhất một cặp số nguyên dương (a;b) sao cho n = 1/2.(a + b – 1)(a + b – 2) + a. [ads] + Một nhóm phượt có n thành viên. Năm 2018, họ thực hiện sáu chuyến du lịch mà mỗi chuyến có đúng 5 thành viên tham gia. Biết rằng hai chuyến du lịch bất kì chung nhau không quá 2 thành viên. Tìm giá trị nhỏ nhất của n. + Cho tam giác ABC nhọn không cần có đường trung tuyến AM và đường phân giác trong AD. Qua điểm N thuộc đoạn thẳng AD (N không trùng với A và D), kẻ NP vuông góc với AB (P thuộc cạnh AB). Đường thẳng qua P vuông góc với AD cắt đoạn thẳng AM tại Q. Chứng minh rằng QN vuông góc với BC.
Đề chọn đội tuyển HSG lớp 12 môn Toán năm 2019 2020 trường Lê Quý Đôn Hà Nội
Nội dung Đề chọn đội tuyển HSG lớp 12 môn Toán năm 2019 2020 trường Lê Quý Đôn Hà Nội Bản PDF Chiều thứ Ba ngày 27 tháng 08 tháng 2019, trường THPT Lê Quý Đôn, quận Đống Đa, Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán nhằm tuyển chọn các em học sinh vào đội tuyển học sinh giỏi Toán lớp 12 của nhà trường trong năm học 2019 – 2020. Đề chọn đội tuyển HSG Toán lớp 12 năm 2019 – 2020 trường Lê Quý Đôn – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài khảo sát là 180 phút, nội dung đề bám sát chương trình Toán lớp 10, 11 và phần kiến thức Toán lớp 12 đã học. [ads] Trích dẫn đề chọn đội tuyển HSG Toán lớp 12 năm 2019 – 2020 trường Lê Quý Đôn – Hà Nội : + Tìm m để đồ thị hàm số y = x3 – 3×2 + mx + 2 – m cắt trục hoành tại 3 điểm phân biệt A, B, C sao cho tổng hệ số góc của các tiếp tuyến với đồ thị hàm số tại các điểm A, B, C bằng 3. + Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 1. Gọi M, N là hai điểm thay đổi lần lượt thuộc các cạnh AB, AC sao cho mặt phẳng (SMN) luôn vuông góc với mặt phẳng (ABC). Đặt AM = x, AN = y. Tìm x, y để tam giác SMN có diện tích bé nhất, lớn nhất. + Cho a, b, c là các số thực dương thoả mãn a + b + c = 3. Tìm giá trị lớn nhất của biểu thức P.