Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi tỉnh Toán 11 chuyên đợt 2 năm 2023 - 2024 sở GDĐT Quảng Nam

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh THPT môn Toán 11 chuyên đợt 2 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi tỉnh Toán 11 chuyên đợt 2 năm 2023 – 2024 sở GD&ĐT Quảng Nam : + Cho dãy số thực (un) xác định bởi 1 u với mọi n. Chứng minh dãy (un) có giới hạn hữu hạn và tính giới hạn đó. + Cho tam giác ABC nhọn (AB AC) và điểm D nằm trên đường trung tuyến AM kẻ từ đỉnh A của tam giác (D khác A). Gọi E là điểm trên đoạn MC (E khác M, C). Gọi H, K lần lượt là hình chiếu của D lên AB và AC. Gọi (C1) và (C2) lần lượt là hai đường tròn ngoại tiếp tam giác BHE và CKE, (C1) cắt (C2) tại điểm thứ hai là L. Gọi d là đường thẳng kẻ từ B vuông góc với BC, d cắt (C1) tại điểm thứ hai là I, N là giao điểm thứ hai của IL và (C2). a) Chứng minh BI song song NC. b) Gọi P là giao điểm của IL và BC. Chứng minh tứ giác ALMP nội tiếp đường tròn. + Cho đoạn thẳng AB được chia thành bốn phần bằng nhau bởi ba điểm M, N, P (hình vẽ). Ta đánh dấu 2024 điểm phân biệt trong đoạn AB bằng cách chia đều trong mỗi đoạn AM, MN, NP, PB có 506 điểm, thỏa mãn điều kiện với một điểm bất kỳ thuộc đoạn AM thì tồn tại một điểm thuộc đoạn MN đối xứng với nhau qua M; tương tự với một điểm bất kỳ thuộc đoạn PB thì tồn tại một điểm thuộc đoạn NP đối xứng với nhau qua P. Sau đó ta thực hiện tô màu đỏ cho 1012 điểm tùy ý và 1012 điểm còn lại màu đen. Chứng minh tổng các khoảng cách từ A đến các điểm màu đỏ bằng tổng các khoảng cách từ B đến các điểm màu đen.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi lớp 11 môn Toán năm 2020 2021 trường THPT Đông Hà Quảng Trị
Nội dung Đề thi học sinh giỏi lớp 11 môn Toán năm 2020 2021 trường THPT Đông Hà Quảng Trị Bản PDF Đề thi học sinh giỏi Toán lớp 11 năm 2020 – 2021 trường THPT Đông Hà – Quảng Trị gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2021. Trích dẫn đề thi học sinh giỏi Toán lớp 11 năm 2020 – 2021 trường THPT Đông Hà – Quảng Trị : + Một trường có 50 học sinh giỏi, trong đó có 4 cặp anh em sinh đôi. Cần chọn ra 3 học sinh trong số 50 học sinh để tham gia trại hè. Tính xác suất để 3 em được chọn không có cặp anh em sinh đôi. + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB a AD a SA ABCD và SA a, M là trung điểm của CD. a) Tính góc giữa SM và SAB. b) Tính theo a khoảng cách từ A đến SBM. + Cho M N P lần lượt là trung điểm của ba cạnh BC CA AB của ABC. Gọi H G O lần lượt là trực tâm, trọng tâm, tâm đường tròn ngoại tiếp ABC, I là tâm đường tròn ngoại tiếp MNP. Chứng minh H G O I thẳng hàng. File WORD (dành cho quý thầy, cô):
Đề thi HSG lớp 11 môn Toán năm 2020 2021 trường THPT Lưu Hoàng Hà Nội
Nội dung Đề thi HSG lớp 11 môn Toán năm 2020 2021 trường THPT Lưu Hoàng Hà Nội Bản PDF Đề thi HSG Toán lớp 11 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội gồm 01 trang với 05 câu tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán lớp 11 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội : + Một người tham gia chương trình bảo hiểm An sinh xã hội của công ty Bảo Việt với thể lệ như sau: Cứ đến tháng 9 hàng năm người đó đóng vào công ty là 12 triệu đồng với lãi suất hàng năm không đổi là 6% / năm. Hỏi sau đúng 18 năm kể từ ngày đóng, người đó thu về được tất cả bao nhiêu triệu đồng (kết quả làm tròn đến hai chữ số phần thập phân). + Cho đa giác đều 18 cạnh. Nối tất cả các đỉnh với nhau. Chọn hai tam giác trong số các tam giác vuông tạo thành từ 3 đỉnh trong 18 đỉnh. Tính xác suất để chọn được hai tam giác có cùng chu vi. + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Đường thẳng SA vuông góc với mặt đáy, góc giữa SB và mặt đáy bằng 60. Gọi N là trung điểm của BC. a) Tính cosin của góc giữa hai đường thẳng SD và AN. b) Gọi H, K là hai điểm lần lượt thuộc các đường thẳng SB và DN sao cho HK SB HK DN. Tính độ dài đoạn HK theo a.
Đề thi học sinh giỏi lớp 11 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Cà Mau
Nội dung Đề thi học sinh giỏi lớp 11 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Cà Mau Bản PDF Chủ Nhật ngày 18 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Cà Mau tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 11 cấp tỉnh năm học 2020 – 2021. Đề thi học sinh giỏi Toán lớp 11 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Cà Mau gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 180 phút.
Đề thi học sinh giỏi tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Quảng Ngãi
Nội dung Đề thi học sinh giỏi tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Quảng Ngãi Bản PDF Chiều thứ Năm ngày 08 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Quảng Ngãi tổ chức kỳ thi chọn học sinh giỏi (HSG) cấp tỉnh lớp 11 môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán lớp 11 năm 2020 – 2021 sở GD&ĐT Quảng Ngãi gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút.