Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh lớp 12 môn Toán THPT năm 2019 2020 sở GD ĐT Hưng Yên

Nội dung Đề thi học sinh giỏi tỉnh lớp 12 môn Toán THPT năm 2019 2020 sở GD ĐT Hưng Yên Bản PDF Ngày … tháng 01 năm 2020, sở Giáo dục và Đào tạo tỉnh Hưng Yên tổ chức kỳ thi chọn học sinh giỏi THPT cấp tỉnh môn Toán lớp 12 năm học 2019 – 2020. Đề thi học sinh giỏi tỉnh Toán lớp 12 THPT năm 2019 – 2020 sở GD&ĐT Hưng Yên gồm có 01 trang với 06 bài toán tự luận, thời gian làm bài 180 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề thi học sinh giỏi tỉnh Toán lớp 12 THPT năm 2019 – 2020 sở GD&ĐT Hưng Yên : + Cho tam giác ABC vuông tại A có ABC = 60 độ. Đường phân giác của góc ABC cắt AC tại I. Trên nửa mặt phẳng bờ là đường thẳng AC, vẽ nửa đường tròn tâm I tiếp xúc với cạnh BC. Cho miền tam giác ABC và nửa hình tròn trên quay quanh trục AC tạo thành các khối tròn xoay có thể tích lần lượt là V1, V2. Tính tỉ số V1/V2. [ads] + Cho hình chóp S.ABCD có ABCD là hình thang cân với AD = 2a, AB = BC = CD = a, cạnh SA vuông góc với đáy. Gọi M là trung điểm của SB và N là điểm thuộc đoạn SD sao cho NS = 2ND. Biết khoảng cách từ S đến mặt phẳng (AMN) bằng 6a√43/43, tính thể tích của khối chóp S.ABCD theo a. + Cho hàm số y = x^3 + mx^2 + 1 có đồ thị (Cm). Tìm các giá trị của tham số m để đường thẳng d: y = 1 – x cắt đồ thị (Cm) tại 3 điểm phân biệt sao cho tiếp tuyến của đồ thị (Cm) tại hai trong ba điểm đó vuông góc với nhau. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Bình Phước
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Bình Phước Bản PDF Ngày 15 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Phước tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2020 – 2021. Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Bình Phước; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bình Phước : + Cho tập T = {1; 2; 3; 4; 5}. Gọi H là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số đôi một khác nhau thuộc T. Chọn ngẫu nhiên một số thuộc H. Tính xác suất để số được chọn có tổng các chữ số bằng 10. + Cho hình vuông ABCD có A(-1;2). Gọi M, N lần lượt là trung điểm BC và CD. Gọi H là giao điểm của BN và AM. Viết phương trình đường tròn ngoại tiếp tam giác HDN biết phương trình đường thẳng BN: 2x + y – 8 = 0 và điểm B có hoành độ lớn hơn 2. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAB là tam giác đều và nằm trong mặt phẳng vuông góc với (ABCD). Gọi H là trung điểm AB. Tính thể tích khối chóp S.ABCD và tan (SH;(SCD)).
Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Kon Tum
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Kon Tum Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Kon Tum; đề gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Kon Tum : + Một nhóm gồm 9 học sinh một lớp trong đó có ba bạn Việt, Nam và Hùng đi dự đại hội Đoàn trường, ban tổ chức sắp xếp ngẫu nhiên 9 học sinh này ngồi vào một dãy ghế được đánh số từ 1 đến 9. Tính xác suất để số ghế của bạn Hùng bằng trung bình cộng số ghế của hai bạn Việt và Nam. + Biết mặt phẳng (ABC) vuông góc với mặt phẳng (ABD). Chứng minh rằng cos A.cos B = cos C với A, B, C là ký hiệu ba góc tương ứng với các đỉnh A, B, C của tam giác ABC. + Cho hàm số f(x) = -x4 + 2mx2 – m2 – 1. Tìm m để đồ thị hàm số f(x) có ba điểm cực trị và ba điểm đó cùng gốc tọa độ O lập thành tứ giác nội tiếp đường tròn.
Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Lạng Sơn
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Lạng Sơn Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Lạng Sơn; đề gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Lạng Sơn : + Một khách sạn có 50 phòng. Hiện tại mỗi phòng cho thuê với giá 400 nghìn đồng một ngày thì toàn bộ phòng được thuê hết. Biết rằng cứ mỗi lần tăng giá lên them 20 nghìn đồng thì có thêm 2 phòng trống. Hỏi giám đốc phải chọn giá phòng mới là bao nhiêu để số tiền thu được của khách sạn trong 1 ngày là lớn nhất. + Gọi S là tập hợp các số có 5 chữ số đôi một khác nhau abcde với a, b, c, d, e thuộc tập {1, 2, 3, …, 9}. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn là số chẵn và thỏa mãn a < b < c < d < e. + Cho hàm số bậc ba y = f(x) = ax3 + bx2 + 1/3x + c và đường thẳng y = g(x) có đồ thị như trong hình vẽ bên và AB = 5. Giải phương trình f(x) = g(x) + x2 + 2.
Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Bình Thuận
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Bình Thuận Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Bình Thuận; đề gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bình Thuận : + Cho đường tròn (O) có đường kính AB cố định, M là điểm di động trên (O) sao cho M khác với các điểm A, B và OM không vuông góc với AB. Các tiếp tuyến của (O) tại A và M cắt nhau tại C. Gọi (I) là đường tròn đi qua M và tiếp xúc với đường thẳng AC tại C. Đường thẳng OC cắt lại (I) tại điểm thứ hai là E. a. Chứng minh E là trung điểm của OC. b. Gọi CD là đường kính của (I). Chứng minh đường thẳng qua D và vuông góc với BC luôn đi qua một điểm cố định khi M di động trên (O). + Cho hai số nguyên dương k và n sao cho k =< n. Xét tất cả các tập hợp con gồm k phần tử của tập hợp {1;2;…;n}. Trong mỗi tập hợp con ta chọn ra phần tử nhỏ nhất. Chứng minh tổng tất cả các phần tử được chọn bằng k+1Cn+1. + Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = (x – 11)√(x2 + 9) trên đoạn [0;4].