Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 10 môn Toán vòng 2 năm 2022 2023 trường THPT Nguyễn Gia Thiều Hà Nội

Nội dung Đề HSG lớp 10 môn Toán vòng 2 năm 2022 2023 trường THPT Nguyễn Gia Thiều Hà Nội Bản PDF - Nội dung bài viết Đề HSG Toán lớp 10 vòng 2 năm 2022-2023 trường THPT Nguyễn Gia Thiều, Hà NộiBài toán sản xuấtBài toán "Lá cờ Việt Nam"Bài toán hàm số Đề HSG Toán lớp 10 vòng 2 năm 2022-2023 trường THPT Nguyễn Gia Thiều, Hà Nội Chúng tôi xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán lớp 10 vòng 2 năm học 2022-2023 trường THPT Nguyễn Gia Thiều, thành phố Hà Nội. Đề thi bao gồm đáp án và lời giải chi tiết để giúp các em ôn tập và chuẩn bị tốt cho kỳ thi. Bài toán sản xuất Trong bài toán này, có ba nhóm máy A, B, C được sử dụng để sản xuất hai loại sản phẩm I và II. Bảng thông tin về số máy cần thiết từng nhóm để sản xuất mỗi loại sản phẩm được cung cấp. Mỗi sản phẩm mang lại một lợi nhuận khác nhau. Bài toán yêu cầu tìm phương án sản xuất để có lãi cao nhất. Bài toán "Lá cờ Việt Nam" Bài toán liên quan đến tỷ số vàng, một khái niệm từ toán học và nghệ thuật. Tỷ số vàng thường được ký hiệu bằng ký hiệu (phi) trong bảng chữ cái Hy Lạp. Nội dung bài toán đưa ra một ví dụ về tỷ số vàng và mối liên hệ với hình chữ nhật, cùng với quy định về quốc kỳ nước Cộng hòa xã hội chủ nghĩa Việt Nam. Bài toán hàm số Trong bài toán này, đề cập đến hình chữ nhật, liên quan đến hàm số và diện tích tam giác. Em được yêu cầu tìm tọa độ điểm C trên cung AB của đồ thị parabol P sao cho tam giác ABC có diện tích lớn nhất và tính diện tích đó. Tất cả các bài toán trong đề thi HSG Toán lớp 10 vòng 2 năm 2022-2023 trường THPT Nguyễn Gia Thiều, Hà Nội đều mang tính chất thực tế và cần sự tư duy logic và kiến thức toán học vững chắc từ các em học sinh. Chúng tôi hy vọng rằng các em sẽ vượt qua thử thách này một cách xuất sắc và phấn đấu học tập hơn nữa trong tương lai.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi tỉnh Toán 10 năm 2021 - 2022 sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 10 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi tỉnh Toán 10 năm 2021 – 2022 sở GD&ĐT Hà Tĩnh: + Trong hệ tọa độ Oxy, cho tam giác ABC vuông tại A, gốc tọa độ O là trung điểm của cạnh BC. Đường phân giác trong góc B có phương trình (d): x + 2y – 5 = 0, đường thẳng AC đi qua điểm I(6;2). Tìm tọa độ các đỉnh của tam giác ABC. + Cho tam giác ABC vuông tại A (BC = a, CA = b, AB = c), đường cao AH, I là điểm thuộc đoạn AH sao cho AI = 2IH. a) Chứng minh rằng a2IA + 2b2IB + 2c2IC = 0. b) Biết góc ACB = 30°, tìm giá trị nhỏ nhất của biểu thức k = 2MA + 3MB + 7MC với M là điểm bất kỳ trong mặt phẳng chứa tam giác. + Cho hàm số f(x) = (x2 + mx + 1)/(x2 + x + 1) (m là tham số). Tìm m để với mọi a, b, c thì f(a), f(b), f(c) là độ dài ba cạnh của một tam giác.
Đề thi HSG Toán 10 năm 2021 - 2022 cụm THPT huyện Lục Nam - Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học sinh giỏi cấp cơ sở môn Toán lớp 10 năm học 2021 – 2022 cụm THPT huyện Lục Nam, tỉnh Bắc Giang; đề thi gồm 40 câu trắc nghiệm (14 điểm) và 03 câu tự luận (06 điểm), thời gian học sinh làm bài thi là 120 phút (không kể thời gian giao đề). Trích dẫn đề thi HSG Toán 10 năm 2021 – 2022 cụm THPT huyện Lục Nam – Bắc Giang : + Một cửa hàng bán đồ nam ở TT Bích Động gồm áo sơ mi, quần âu và áo phông. Ngày thứ nhất bán được 22 áo sơ mi, 12 quần âu và 18 áo phông, doanh thu là 12580000 đồng. Ngày thứ hai bán được 16 áo sơ mi, 10 quần âu và 20 áo phông, doanh thu là 10800000 đồng. Ngày thứ ba bán được 24 áo sơ mi, 15 quần âu và 12 áo phông, doanh thu là 12960000 đồng. Hỏi giá bán mỗi áo sơ mi, mỗi quần âu và mỗi áo phông là bao nhiêu? Biết giá từng loại trong ba ngày không thay đổi. A. 250000 đồng/áo sơ mi, 320000 đồng/quần âu, 180000 đồng/áo phông. B. 260000 đồng/áo sơ mi, 300000 đồng/quần âu, 190000 đồng/áo phông. C. 250000 đồng/áo sơ mi, 330000 đồng/quần âu, 170000 đồng/áo phông. D. 200000 đồng/áo sơ mi, 300000 đồng/quần âu, 190000 đồng/áo phông. + Quảng cáo sản phẩm trên truyền hình là một hoạt động quan trọng trong kinh doanh của các doanh nghiệp. Theo Thông báo số 10 / 2019 , giá quảng cáo trên VTV1 là 30 triệu đồng cho 15 giây/1 lần quảng cáo vào khoảng 20 h30 ; là 6 triệu đồng cho 15 giây/l lần quảng cáo vào khung giờ 16h00 -17h00. Một công ty dự định chi không quá 900 triệu đồng để quảng cáo trên VTV1 với yêu cầu quảng cáo về số lần phát như sau: ít nhất 10 lần quảng cáo vào khoảng 20 h30 và không quá 50 lần quảng cáo vào khung giờ 16 h00 17 h00  . Tổng số lần xuất hiện quảng cáo của công ty trên VTV1 nhiều nhất là bao nhiêu? + Cho tam giác ABC là tam giác đều có độ dài cạnh bằng 1. Trên các cạnh BC CA AB lần lượt lấy các điểm N M P sao cho 1 3 BN 2 3 CM AP x với 0 1 x. Biết rằng có hai giá trị của x để đường thẳng AN tạo với đường thẳng PM một góc 60, tính tổng của hai giá trị đó. + Cho tam giác ABC vuông tại A. Gọi là góc giữa hai đường trung tuyến BD và CK. Tìm giá trị nhỏ nhất của cos. + Cho tam giác ABC thỏa mãn AB AC 24 và sin sin sin cos cos B C A B C. Gọi M là trung điểm của cạnh BC và G là trọng tâm của tam giác ABC. Tìm diện tích tam giác MBG.
Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Lưu Hoàng - Hà Nội
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội gồm 01 trang với 05 câu tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội : + Cho parabol 2 P y x bx c (b c là các tham số thực). a) Tìm giá trị của b c biết parabol P đi qua điểm M(3;2)  và có trục đối xứng là đường thẳng x 1. b) Với giá trị của b c tìm được ở câu a, tìm m để đường thẳng d y x m cắt parabol P tại hai điểm phân biệt AB sao cho tam giác OAB vuông tại O (với O là gốc tọa độ). + Trong mặt phẳng tọa độ Oxy, cho hai điểm A và B. Tìm tọa độ điểm C sao cho tam giác ABC vuông cân tại A. + Cho ba số thực x y z thỏa mãn x y z 1 1 1 và 1 1 1 2 x y z. Tìm giá trị lớn nhất của biểu thức A x y z 1 1 1.
Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Đan Phượng - Hà Nội
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội : + Cho a, b, c là các số thực thỏa mãn: a b b c c a 8. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 2 2 2 P a b c. + Viết phương trình đường thẳng đi qua B(4;5) và tạo với đường thẳng 7 8 0 x y một góc 45°. + Cho tứ giác ABCD, AC và BD cắt nhau tại O. Gọi H, K lần lượt là trực tâm của tam giác ABO và CDO. Gọi M, N lần lượt là trung điểm của AD và BC. Chứng minh rằng HK MN.