Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra HKI Toán 11 năm 2019 - 2020 trường Nguyễn Gia Thiều - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh khối lớp 11 đề kiểm tra HKI Toán 11 năm học 2019 – 2020 trường THPT Nguyễn Gia Thiều – Hà Nội, kỳ thi nhằm kiểm tra toàn diện tất cả các kiến thức Đại số & Giải tích 11 và Hình học 11 mà học sinh đã học trong học kỳ vừa qua. Trích dẫn đề kiểm tra HKI Toán 11 năm 2019 – 2020 trường Nguyễn Gia Thiều – Hà Nội : + Khẳng định nào dưới đây sai? A. Phép biến hình bảo toàn khoảng cách hai điểm bất kì là một phép đồng dạng. B. Phép vị tự tâm I, tỉ số k biến hai điểm M, N lần lượt thành hai điểm M’, N’ thì M’N’ = kMN. C. Phép quay tâm I, góc quay 540° là một phép đối xứng tâm I. D. Phép quay biến đường thẳng thành đường thẳng vuông góc với nó. [ads] + Một danh sách có 10 học sinh và 10 lớp học đều được đánh số theo thứ tự từ 1 đến 10. Chọn ngẫu nhiên 3 học sinh và sắp xếp vào 3 lớp học được lấy từ 10 lớp học trên (mỗi lớp chỉ có 1 học sinh). Tính xác suất để học sinh có thứ tự lẻ thì vào lớp học được đánh số lẻ, học sinh có thứ tự chẵn thì vào lớp học được đánh số chẵn. + Trong không gian, khẳng định nào dưới đây đúng? A. Nếu hai mặt phẳng lần lượt chứa hai đường thẳng song song thì giao tuyến, nếu có, của chúng sẽ song song với cả hai đường thẳng đó. B. Nếu ba mặt phẳng cắt nhau theo ba giao tuyến thì ba giao tuyến đó đồng qui. C. Nếu hai đường thẳng a và b chéo nhau thì có hai đường thẳng p và q song song nhau mà mỗi đường đều cắt cả a và b. D. Hai đường thẳng phân biệt cùng nằm trong một mặt phẳng thì không chéo nhau.

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Lê Quý Đôn - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Lê Quý Đôn, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Lê Quý Đôn – TP HCM : + Một bàn dài có hai dãy ghế đối diện nhau, mỗi dãy gồm 8 ghế. Người ta muốn xếp chỗ ngồi cho 8 học sinh trường A và 8 học sinh trường B vào bàn nói trên. Hỏi có bao nhiêu cách xếp sao cho bất cứ 2 học sinh nào ngồi đối diện nhau thì khác trường với nhau? + Hộp thứ nhất có 2 bi đỏ và 10 bi vàng, hộp thứ hai có 8 bi đỏ và 4 bi vàng. Lấy từ mỗi hộp 3 viên bi. Tính xác suất để 6 bi được chọn có đủ hai màu. + Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8; 9 lập các số tự nhiên có 5 chữ số khác nhau. Chọn ngẫu nhiên một số trong các số đó. Tính xác suất để số được chọn là số tự nhiên chẵn, có đúng hai chữ số lẻ và 2 chữ số lẻ đứng cạnh nhau?
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Trần Phú - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Trần Phú, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Trần Phú – TP HCM : + Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập được tất cả bao nhiêu số tự nhiên chẵn có năm chữ số khác nhau và trong năm chữ số đó có đúng hai chữ số lẻ và hai chữ số lẻ này không đứng cạnh nhau. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi G là trọng tâm của tam giác SAD. Lấy điểm M thuộc cạnh AB sao cho AB = 3AM. 1) Tìm giao tuyến của mặt phẳng (SAD) và mặt phẳng (GBC). Tìm giao điểm H của đường thẳng BC với mặt phẳng (SGM). 2) Chứng minh rằng đường thẳng MG song song với mặt phẳng (SBC). 3) Mặt phẳng (a) qua M và song song với AD và SB, (a) cắt các cạnh CD, SD, SA lần lượt tại các điểm N, P, Q. Xác định thiết diện của mặt phẳng (a) với hình chóp S.ABCD. + Một hộp có chứa 4 quả cầu màu đỏ, 5 quả cầu màu xanh và 7 quả cầu màu vàng. Lấy ngẫu nhiên cùng lúc ra 4 quả cầu từ hộp đó. Tính xác suất sao cho 4 quả cầu được lấy ra có đúng 1 quả cầu màu đỏ và không quá 2 quả cầu màu vàng.
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Thủ Khoa Huân - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Thủ Khoa Huân, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Thủ Khoa Huân – TP HCM : + Cho A = {0; 1; 2; 3; 4; 5; 6; 7}. a/ Có thể lập được bao nhiêu số có 4 chữ số khác nhau? b/ Có thể lập được bao nhiêu số có 4 chữ số khác nhau và chia hết cho 5? c/ Gọi S là tập các số có bốn chữ số khác nhau được lập từ tập A. Lấy ngẫu nhiên một số từ tập S, tính xác suất số lấy được là một số chia hết cho 4. + Giải các phương trình lượng giác sau. + Tìm số hạng không chứa x trong khai triển (x2 – 1/x4)^12.
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Trần Nhân Tông - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Trần Nhân Tông, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Trần Nhân Tông – TP HCM : + Từ 5 chữ số 1, 3, 4, 5, 7 có thể tạo thành bao nhiêu số có 4 chữ số trong mỗi trường hợp sau: a) Bốn chữ số đôi một khác nhau. b) Chữ số 1 có mặt 2 lần, các chữ số còn lại có mặt nhiều nhất 1 lần. + Tìm hệ số của số hạng chứa x^4 trong khai triển của biểu thức (1 + 2x)^6. + Tìm hệ số của số hạng chứa x4y4 trong khai triển của biểu thức (x2 + 1)(3x – 2y)^6.